Answer:
5xy (3x - 5y + 15xy)
Step-by-step explanation:
Ahora, si quiero tomar factores comunes, debo buscar algo que divida todos los términos de la expresión.
Este término que va a dividir todos los términos de la expresión es 5xy
Por lo tanto, para factorizar 15x2y - 25xy2 + 75x2y2
Tengo;
5xy (3x - 5y + 15xy)
Nick could use any of the questions above to help him understand the problem. The best one is probably <span>D. Can I write an equation to represent the problem situation because it helps him visualize the math word problem in easier terms.</span>
Use the distributive property, which states:
a(b+c) = ab + ac
a(b-c) = ab - ac
2(24x - 18) = 2(24x) - 2(18) = 48x - 36
3(16x - 12) = 3(16x) - 3(12) = 48x - 36
4(12x - 9) = 4(12x) - 4(9) = 48x - 36
All of the expressions are equivalent to 48x - 36.
Line three is the correct answer
Answer:
Option B
Step-by-step explanation:
Numerator:

![=\dfrac{3- 4x -4*(-1)}{x-1}=\dfrac{3-4x+4}{x-1}\\\\\\=\dfrac{-4x+7}{x-1} \: \textbf{ [Combine like terms]}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B3-%204x%20-4%2A%28-1%29%7D%7Bx-1%7D%3D%5Cdfrac%7B3-4x%2B4%7D%7Bx-1%7D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B-4x%2B7%7D%7Bx-1%7D%20%5C%3A%20%20%5Ctextbf%7B%20%5BCombine%20like%20terms%5D%7D)
Denominator:



![\bf = \dfrac{-4x+7}{x-1}*\dfrac{x-1}{2(x-2)} \ \ \ \textbf{ [(x-1) in the numerator and denominator will be cancelled]}\\\\\\=\dfrac{-4x+7}{2(x-2)}](https://tex.z-dn.net/?f=%5Cbf%20%3D%20%5Cdfrac%7B-4x%2B7%7D%7Bx-1%7D%2A%5Cdfrac%7Bx-1%7D%7B2%28x-2%29%7D%20%5C%20%5C%20%5C%20%20%5Ctextbf%7B%20%5B%28x-1%29%20in%20the%20numerator%20and%20denominator%20will%20be%20cancelled%5D%7D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B-4x%2B7%7D%7B2%28x-2%29%7D)