Answer:
B=0.2T
Explanation:
given required solution
l=4m B=? <em>F</em><em>=</em><em>BIL</em>
i=0.5A B=F/IL
F=0.4N B=0.4N/0.5A*4m
B=0.4/2=0.2T
Answer:
B
Explanation:
reading the volume of water in a graduated cylinder which can be read to the nearest mL is accurate, it lacks precision due to the bottom meniscus formed.
the bottom meniscus may cause a wrong reading due to refraction of light
Answer:
1.125m/s^2
Explanation:
Since acceleration is defined as the rate of change in velocity with respect to time. Mathematically
v^2= u^2+2as
Where a,v,u and s are the acceleration, final velocity, initial velocity and distance respectively.
a = ?
u = 0m/s
v = 15m/s
s = 100m
Substituting the values into the formula above
v^2= u^2+2as
15^2=0^2+2×a×100
225= 0+200a
225= 200a
Divide both sides by 200
225/200 = 200a/200
a= 1.125m/s^2
Hence the acceleration of the car is 1.125m/s^2.
Note that the car accelerated uniformly from rest, that was why the initial velocity was 0m/s
Answer:
a. 165.5 V
b. 7.78 A
Explanation:
Here is the complete question
The RMS potential difference of an AC household outlet is 117 V. a) What is the maximum potential difference across a lamp connected to the outlet? b) If the RMS current through the lamp is 5.5 A, what is the maximun current through the lamp.
Solution
a. The maximum potential difference across the lamp V₀ = √2V₁ where V₁ = rms value of potential difference = 117 V
V₀ = √2V₁ = √2 × 117 V = 165.5 V
b. The maximum current through the lamp I₀ = √2I₁ where I₁ = rms value of current = 5.5 A
V₀ = √2V₁ = √2 × 5.5 A = 7.78 A