<h2>
The child swing through the swing's equilibrium position 6 times during the course of 3 periods.</h2>
Explanation:
One period means time taken to complete one revolution.
In case of swings in one period time it travels the same position through two times.
Here we need to find how many times does the child swing through the swing's equilibrium position during the course of 3 period(s) of motion.
For 1 period = 2 times
For 3 periods = 3 x For 1 period
For 3 periods = 3 x 2 times
For 3 periods = 6 times
The child swing through the swing's equilibrium position 6 times during the course of 3 periods.
Answer:
c. 48 cm/s/s
Explanation:
Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They determine that a net force of F causes a cart with a mass of M to accelerate at 48 cm/s/s. What is the acceleration value of a cart with a mass of 2M when acted upon by a net force of 2F?
from newtons second law of motion ,
which states that change in momentum is directly proportional to the force applied.
we can say that
f=m(v-u)/t
a=acceleration
t=time
v=final velocity
u=initial velocity
since a=(v-u)/t
f=m*a
force applied is F
m =mass of the object involved
a is the acceleration of the object involved
f=m*48.........................1
in the second case ;a mass of 2M when acted upon by a net force of 2F
f=ma
a=2F/2M
substituting equation 1
a=2(M*48)/2M
a=. 48 cm/s/s
Answer: B
Explanation: look at the chart, easy
Answer:
- The magnitude of the vector
is 107.76 m
Explanation:
To find the components of the vectors we can use:

where
is the magnitude of the vector, and θ is the angle over the positive x axis.
The negative x axis is displaced 180 ° over the positive x axis, so, we can take:






Now, we can perform vector addition. Taking two vectors, the vector addition is performed:

So, for our vectors:


To find the magnitude of this vector, we can use the Pythagorean Theorem



And this is the magnitude we are looking for.
That's called "refraction".