The question is not complete
Answer:
1.196 μm
Explanation:
D = Screen distance = 3 m
= Wavelength = 598 m
y = Distance of first-order bright fringe from the center of the central bright fringe = 4.84 mm
d = Slit distance


For first dark fringe

Wavelength of first-order dark fringe observed at this same point on the screen is 1.196 μm
Answer:
-39.2m/s
Explanation:
Using the equation of motion;
v = u + at
Since the ball is thrown upward, the acceleration due to gravity acting on it will be negative, hence a = -g
v = u - gt
Since g = 9.8m/s²
t = 4.0s
u = 0m/s
v = 0 + (-9.8)(4)
v = 0 + (-9.8)(4)
v = -39.2m/s
Hence the speed of the ball before release is -39.2m/s
The outside observer, at rest relative to the spaceship, would see the spaceship
get shorter. and the clocks on the spaceship run slower than they should.
At the same time, the crew of the spaceship, looking back at the observer on
Earth, would see the observer on Earth get shorter, and the observer's clock
run slower than it should.
They would both be measuring what they see correctly.