Answer:
We conclude that If Tawnee increases the length and width of the playground by a scale factor of 2, the perimeter of the new playground will be twice the perimeter of the original playground.
Step-by-step explanation:
We know that the perimeter of a rectangle = 2(l+w)
i.e.
P = 2(l+w)
Here
Given that the length and width of the playground by a scale factor of 2
A scale factor of 2 means we need to multiply both length and width by 2.
i.e
P = 2× 2(l+w)
P' = 2 (2(l+w))
= 2P ∵ P = 2(l+w)
Therefore, we conclude that If Tawnee increases the length and width of the playground by a scale factor of 2, the perimeter of the new playground will be twice the perimeter of the original playground.
Answer:
The answer is 19
Step-by-step explanation:
I'm pretty sure the answer is 19
It’s 10.2040816 right!!!!
Answer:
The frequency of the note a perfect fifth below C4 is;
B- 174.42 Hz
Step-by-step explanation:
Here we note that to get the "perfect fifth" of a musical note we have to play a not that is either 1.5 above or 1.5 below the note to which we reference. Therefore to get the frequency of the note a perfect fifth below C4 which is about 261.63 Hz, we have
1.5 × Frequency of note Y = Frequency of C4
1.5 × Y = 261.63
Therefore, Y = 261.63/1.5 = 174.42 Hz.
Answer:
where are the expressions??