1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
3 years ago
7

What planet has the least amount of inertia

Physics
1 answer:
DENIUS [597]3 years ago
6 0
Mars has the least amount of inertia
You might be interested in
Suppose you have two identical sheets of paper and you crumple one of the sheets of paper into a ball. If you drop the crumpled
sammy [17]

Answer:

Because it can easily resist air resistance.

Explanation:

Since air resistance is not negligible, the crumpled paper will reach the ground first because it can easily resist air resistance surrounding it compare to the un-crumpled one that will be influenced by the air thereby causing the un-crumpled paper to spend more time in the air

3 0
3 years ago
Study the velocity vs. time graph shown.
Sindrei [870]

Answer:24m

Explanation:

5 0
4 years ago
If the distance between us and a star is doubled, with everything else remaining the same, the luminosity Group of answer choice
Savatey [412]

Answer:

remains the same, but the apparent brightness is decreased by a factor of four.

Explanation:

A star is a giant astronomical or celestial object that is comprised of a luminous sphere of plasma, binded together by its own gravitational force.

It is typically made up of two (2) main hot gas, Hydrogen (H) and Helium (He).

The luminosity of a star refers to the total amount of light radiated by the star per second and it is measured in watts (w).

The apparent brightness of a star is a measure of the rate at which radiated energy from a star reaches an observer on Earth per square meter per second.

The apparent brightness of a star is measured in watts per square meter.

If the distance between us (humans) and a star is doubled, with everything else remaining the same, the luminosity remains the same, but the apparent brightness is decreased by a factor of four (4).

Some of the examples of stars are;

- Canopus.

- Sun (closest to the Earth)

- Betelgeuse.

- Antares.

- Vega.

8 0
3 years ago
The reflective surface of a CD consists of spirals of equally spaced grooves. If you shine a laser pointer on a CD, each groove
Ipatiy [6.2K]

Answer:

d = 1.55 * 10⁻⁶ m

Explanation:

To calculate the distance between the adjacent grooves of the CD, use the formula, d = \frac{m \lambda}{sin(A_{m}) }..........(1)

The fringe number, m = 1 since it is a first order maximum

The wavelength of the green laser pointer, \lambda = 532 nm = 532 * 10⁻⁹ m

Distance between the central maximum and the first order maximum = 1.1 m

Distance between the screen and the CD = 3 m

A_{m} = Angle between the incident light and the diffracted light

From the setup shown in the attachment, it is a right angled triangle in which

sin(A_{m}) = \frac{opposite}{Hypotenuse} \\sin(A_{m}) =\frac{1.1}{\sqrt{1.1^{2}+3^{2}}}

sin(A_{m} ) = 0.344\\A_{m} = sin^{-1} 0.344\\A_{m} = 20.14^{0}

Putting all appropriate values into equation (1)

d = \frac{1* 532*10^{-9} }{0.344 }\\d = 0.00000155 m\\d = 1.55 * 10^{-6} m

3 0
3 years ago
Two identical silver spheres of mass m and radius r are placed a distance R (sphere 1) and 2R (sphere 2) from the Sun, respectiv
lys-0071 [83]

Answer:

The ratio of T2 to T1 is 1.0

Explanation:

The gravitational force exerted on each sphere by the sun is inversely proporational to the square of the distance between the sun and each of the spheres.

Provided that the two spheres have the same radius r, the pressure of solar radiation too, is inversely proportional to the square of the distance of each sphere from the sun.

Let F₁ and F₂ = gravitational force of the sun on the first and second sphere respectively

P₁ and P₂ = Pressure of solar radiation on the first and second sphere respectively

M = mass of the Sun

m = mass of the spheres, equal masses.

For the first sphere that is distance R from the sun.

F₁ = (GmM/R²)

P₁ = (k/R²)

T₁ = (F₁/P₁) = (GmM/k)

For the second sphere that is at a distance 2R from the sun

F₂ = [GmM/(2R)²] = (GmM/4R²)

P₂ = [k/(2R)²] = (k/4R²)

T₂ = (F₂/P₂) = (GmM/k)

(T₁/T₂) = (GmM/k) ÷ (GmM/k) = 1.0

Hope this Helps!!!

3 0
3 years ago
Other questions:
  • The x-coordinates of two objects moving along the x-axis are given as a function of time t. x1 = (4 m/s)t and x2 = −(159 m) + (2
    13·1 answer
  • What is the linear speed of a point on the equator, due to the earth's rotation?
    10·1 answer
  • A 55-liter tank is full and contains 40kg of fuel. Find using Sl units: • Density p. • Specific Weight y • Specific Gravity Answ
    12·1 answer
  • Please I need help on this
    15·1 answer
  • When you float an ice cube in water, you notice that 90% of it is submerged beneath the surface. Now suppose you put the same ic
    11·1 answer
  • Which example does not describe a behavioral adaptation? A. A squirrel buries acorns to dig up and eat later. B. A honeybee does
    13·2 answers
  • The diagram below shows the relative positions of Earth and the Sun at a certain time of the year. Based on the diagram, which s
    5·1 answer
  • Question 6 (10 points)
    10·1 answer
  • Help please:))))))))))))))))))))
    12·1 answer
  • b. Ron bicycles forward with an acceleration of 2.1 m/s2. If he is applying a forward force of 195 N, what is his mass?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!