Answer:Explanation:gfgfgfgfgfgfgfgfgfg
Answer:
W = 2352 J
Explanation:
Given that:
- mass of the bucket, M = 10 kg
- velocity of pulling the bucket, v = 3

- height of the platform, h = 30 m
- rate of loss of water-mass, m =

Here, according to the given situation the bucket moves at the rate,

The mass varies with the time as,

Consider the time interval between t and t + ∆t. During this time the bucket moves a distance
∆x = 3∆t meters
So, during this interval change in work done,
∆W = m.g∆x
<u>For work calculation:</u>
![W=\int_{0}^{10} [(10-0.4t).g\times 3] dt](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7B10%7D%20%5B%2810-0.4t%29.g%5Ctimes%203%5D%20dt)
![W= 3\times 9.8\times [10t-\frac{0.4t^{2}}{2}]^{10}_{0}](https://tex.z-dn.net/?f=W%3D%203%5Ctimes%209.8%5Ctimes%20%5B10t-%5Cfrac%7B0.4t%5E%7B2%7D%7D%7B2%7D%5D%5E%7B10%7D_%7B0%7D)

Answer:
0.2286 m, 0.686 m and 1,143 m
therefore we see that there is respect even where the intensity is minimal
Explanation:
Destructive interference to the two speakers is described by the expression
Δr = (2n +1) λ/2
where r is the distance, λ the wavelength and n an integer indicating the order of the interference
let's locate the origin on the left speaker
let's find the wavelength with the equation
v = λ f
λ = v / f
we substitute
Δr = (2n + 1) v / 2f
let's calculate for difference values of n
Δr = (2n +1) 343/(2 750)
Δr = (2n + 1) 0.2286
we locate the different values for a minimum of interim
n Δr (m)
0 0.2286
1 0.686
2 1,143
therefore we see that there is respect even where the intensity is minimal
The best option is B) <span>7.0 × 10² newtons.
</span>If Earth attracts a person with a gravitational force of <span><span>7.0 × 10² </span>newtons,
the person attracts Earth with a gravitational force of 7.0 × 10² newtons.</span>
Answer: 0.076 m/s
Explanation:
Momentum is conserved:
m v = (m + M) V
(0.111 kg) (55 m/s) = (0.111 kg + 80. kg) V
V = 0.076 m/s
After catching the puck, the goalie slides at 0.076 m/s.