The length of one segment is 15 cm and other segment is 60 cm
Step-by-step explanation:
Let x be the length of one segment and y be the length of other segment
Then according to given statement
x+y=75 Eqn 1
And
one the segments are four times the other
x=4y Eqn 2


Hence,
The length of one segment is 15 cm and other segment is 60 cm
Keywords: Linear Equation, Variables
Learn more about linear equations at:
#LearnwithBrainly
30.00x3=90.00$+25.00$=115.00$ so it has to be 115.00)
Answer:
no equation given ,pls mention it in the comments
complementary angles add up to 90°, so therefore we know that ∡A + ∡B = 90°, and also they are in a ratio of 3:6.
![\bf \cfrac{A}{B}=\cfrac{3}{6}\implies \cfrac{A}{B}=\cfrac{1}{2}\implies 2A=\boxed{B} \\\\[-0.35em] ~\dotfill\\\\ A+B=90\implies A+\boxed{2A}=90\implies 3A=90\\\\\\ A=\cfrac{90}{3}\implies \blacktriangleright A=30 \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ 2(30)=B\implies \blacktriangleright 60=B \blacktriangleleft](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7BA%7D%7BB%7D%3D%5Ccfrac%7B3%7D%7B6%7D%5Cimplies%20%5Ccfrac%7BA%7D%7BB%7D%3D%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%202A%3D%5Cboxed%7BB%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill%5C%5C%5C%5C%0AA%2BB%3D90%5Cimplies%20A%2B%5Cboxed%7B2A%7D%3D90%5Cimplies%203A%3D90%5C%5C%5C%5C%5C%5C%20A%3D%5Ccfrac%7B90%7D%7B3%7D%5Cimplies%20%5Cblacktriangleright%20A%3D30%20%5Cblacktriangleleft%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A2%2830%29%3DB%5Cimplies%20%5Cblacktriangleright%2060%3DB%20%5Cblacktriangleleft)
Answer: 46.5 yards
*the answer may be C since it's the closest*
Explanation: With a diagonal in the rectangle it creates a triangle so you can use the Pythagorean Theorem to solve the problem.