Given that
log (x+y)/5 =( 1/2) {log x+logy}
We know that
log a+ log b = log ab
⇛log (x+y)/5 =( 1/2) log(xy)
We know that log a^m = m log a
⇛log (x+y)/5 = log (xy)^1/2
⇛log (x+y)/5 = log√(xy)
⇛(x+y)/5 = √(xy)
On squaring both sides then
⇛{ (x+y)/5}^2 = {√(xy)}^2
⇛(x+y)^2/5^2 = xy
⇛(x^2+y^2+2xy)/25 = xy
⇛x^2+y^2+2xy = 25xy
⇛x^2+y^2 = 25xy-2xy
⇛x^2+y^2 = 23xy
⇛( x^2+y^2)/xy = 23
⇛(x^2/xy) +(y^2/xy) = 23
⇛{(x×x)/xy} +{(y×y)/xy} = 23
⇛(x/y)+(y/x) = 23
Therefore, (x/y)+(y/x) = 23
Hence, the value of (x/y)+(y/x) is 23.
$$ −\frac{7}{10} \div\frac{2}{5}= \frac{-7}{4} $$ . totally answer. I hope helping with this answer
The team that should be awarded for consistent performance should be Team M. This is because the standard deviation of the team's players' scores is the lowest. Standard deviation is a measure of how much the individual data points vary from the average value, and for a consistent performance, this variation will be low.
The team with the highest average is Team N. The average is the same as the mean, and this is the highest for Team N, with a value of 13.