Answer:
30
Step-by-step explanation:
20+11=31
It can't be exactly 31 but it can be any number less than 31, so the nearest whole number down is 30
Answer:
The correct option is D. Discontinuity at (1, 7), zero at (negative four thirds, 0)
Step-by-step explanation:

To find the point of discontinuity :
Put the denominator equal to 0
⇒ x - 1 = 0
⇒ x = 1
Also, if the factor (x - 1) gets cancel, then it becomes a hole rather than a asymptote , ⇒ y = 3x + 4 at x = 1
⇒ y = 7
So, Point of discontinuity : (1, 7)
And the zero is : after cancelling the factor (x - 1) put the remaining factor = 0
⇒ 3x + 4 = 0
⇒ 3x = -4
⇒ x = negative four thirds ( zero of the function)
Therefore, The correct option is D. Discontinuity at (1, 7), zero at (negative four thirds, 0)
The correct answer to that would be b
Answer:
The equation of the quadratic graph is f(x)= - (1/8) (x-3)^2 + 3 (second option)
Step-by-step explanation:
Focus: F=(3,1)=(xf, yf)→xf=3, yf=1
Directrix: y=5 (horizontal line), then the axis of the parabola is vertical, and the equation has the form:
f(x)=[1 / (4p)] (x-h)^2+k
where Vertex: V=(h,k)
The directix y=5 must intercept the axis of the parabola at the point (3,5), and the vertex is the midpoint between this point and the focus:
Vertex is the midpoint between (3,5) and (3,1):
h=(3+3)/2→h=6/2→h=3
k=(5+1)/2→k=6/2→k=3
Vertex: V=(h,k)→V=(3,3)
p=yf-k→p=1-3→p=-2
Replacing the values in the equation:
f(x)= [ 1 / (4(-2)) ] (x-3)^2 + 3
f(x)=[ 1 / (-8) ] (x-3)^2 + 3
f(x)= - (1/8) (x-3)^2 + 3