The two rational expressions will be; (x + 2)/(x² - 36) and 1/(x² + 6x)
<h3>How to simplify Quadratic Expressions?</h3>
We want to determine the two rational expressions whose difference completes the equation.
The two rational expressions will be;
(x + 2)/(x² - 36) and 1/(x² + 6x)
Now, this can be proved as follows;
Step 2 [(x + 2)/(x² - 36)] - [1/(x² + 6)]
= [(x + 2)/(x + 6)(x - 6)] - [1/(x(x + 6)]
Step 3; By subtracting, we have;
[x(x + 2) - (x - 6)]/[x(x + 6)(x - 6)]
Step 4; By further simplification of step 3, we have;
[x² + x + 6]/[x(x-6)(x + 6)]
Read more about Quadratic Expressions at; brainly.com/question/1214333
#SPJ1
Answer:
8n³ + 4
Step-by-step explanation:
Answer:
85º
Step-by-step explanation:
<7=<4 since we know the lines are parallel, and intersected at the same angle
Therefore, <7=85º.
<u>Answer:</u>
Angle A = 39°
<u>Step-by-step explanation:</u>
We are given that there is a triangle ABC where a = 9, c = 5 and angle B = 120° and we are to find the measure of angle A.
But first we need to find the side b using the law of cosine:



Now finding angle A using law of cosine:




Therefore, the measure of angle A = 39°.
Answer:

Step-by-step explanation:
Given the expression 
According to the law of logarithm;
loga + log b = log(ab) and log a - log b = log(a/b)
The given expression becomes;
