The methane molecule in the stratosphere has a higher potential energy than the CH₃ molecule and the hydrogen atom formed from breaking one of the carbon‐hydrogen bonds in a CH₄ molecule.
The complete question is:
<em>For each of the following situations, you are asked which of two objects or substances has the higher energy. Explain your answer with reference to the capacity of each to do work and say whether the energy that distinguishes them is kinetic energy or potential energy.</em>
<em>a. (1) A methane molecule, CH4, in the stratosphere or (2) a CH3 molecule and a hydrogen atom formed from breaking one of the carbon-hydrogen bonds in a CH4 molecule.</em>
<h3>Which have a higher energy?</h3>
The methane molecule in the stratosphere is a stable molecule and possesses chemical potential energy.
The CH₃ molecule and the hydrogen atom formed from breaking one of the carbon‐hydrogen bonds in a CH₄ molecule are unstable molecules and possesses kinetic energy. However, some of their energy has been used in breaking the bond.
Thus, the methane molecule in the stratosphere has a higher potential energy than the CH₃ molecule and the hydrogen atom formed from breaking one of the carbon‐hydrogen bonds in a CH₄ molecule.
In conclusion, the energy in the methane molecule is higher.
Learn more about potential energy at: brainly.com/question/14427111
#SPJ1
Fawn spends hours each week managing employee shifts and schedules, time she should be spending on other restaurant operations. What can she do? O a) Start leaving more time in her week for scheduling-related tasks b) Write everything down in a weekly planner O c) Consider online inventory management software O d) Consider online scheduling software
Answer:
17.09g/L
Explanation:
Density = total mass of elements/ volume
We need to find the mass of each mixture constituents using their molar mass:
mole = mass/molar mass
For Neon (Ne) which contains 0.650mol;
0.650 = mass/20.18
mass = 0.650 × 20.18
mass = 13.12g
For Krypton (Kr) which contains 0.321mol;
0.321 = mass/83.79
mass = 0.321 × 83.79
mass = 26.89g
For Xenon (Xe) which contains 0.190mol;
0.190 = mass/131.3
mass = 0.190 × 131.3
mass = 24.95g
Total mass = 13.12g + 26.89g + 24.95g = 64.96g
Density = total mass / volume
Density = 64.96g / 3.80L
Density of the mixture = 17.09g/L