Answer:
B
Explanation:
B is the best showing of a chemical reaction out of the choices
Answer: 
Explanation:
Electron gain enthalpy is defined as energy released on addition of electron to an isolated gaseous atom.
The amount of energy released will be maximum when the tendency to attract electrons is maximum. As flourine has atomic number of 9 and has electronic configuration of 2,7. It can readily gain 1 electron to attain stable noble gas configuration and hence liberates maximum energy.
Answer:
No.
Explanation:
No, one mole of peas do not fit inside a house because one mole is equals to 6.022 × 10²³ units which is a very large value. mole only use for atoms, ions and molecules etc due to very small size but mole is not used for big sized materials such as peas and other vegetables etc. So that's why we can conclude that one mole of peas did not fit inside a house.
Answer:
CH2O
Explanation:
Firstly, we need to convert the masses of the elements to percentage compositions. This can be done by placing the mass of each element over the total mass multiplied by 100% . We can start with carbon.
C = 5.692/14.229 * 100 = 40%
O = 7.582/14.229 * 100 = 53.29%
H = 0.955/14.229 * 100 = 6.71%
We then proceed to divide each percentage composition by their atomic mass of 12, 16 and 1 respectively.
C = 40/12 = 3.333
O = 53.29/16 = 3.33
H = 6.71/2 = 6.71
Dividing by the smaller value which is 3.33
C = 3.33/3.33 = 1
O = 3.33/3.33= 1
H = 6.71/3.33 = 2
The empirical formula of the compound ribose is CH2O
Answer:
D) He did not multiply the chlorine and oxygen atoms by the coefficient 4.
Explanation:
The coefficient 4 at the beginning of the chemical formula indicates that there are four Ca(ClO3)2 molecules. Think of this as Ca(ClO3)2 × 4. This means that he had to multiply the number of atoms for each element by 4 as well, so he should've ended up with 4 total calcium atoms (which is correct), 8 total chlorine atoms, and and 24 total oxygen atoms. He did not get all these answers because he didn't multiply the chlorine and oxygen atoms by the coefficient 4.