<span><span>LiF, LiCl, LiBr, LiI, LiAtNaF, NaCl, NaBr, NaI, NaAtKF, KCl, KBr, KI, KAt</span><span>RbF, RbCl, RbBr, RbI, RbAt CsF, CsCl, CsBr, CsI, CsAt FrF, FrCl, FrBr, FrI, FrAt<span>
</span></span></span>
Answer:
T2 = 135.1°C
Explanation:
Given data:
Mass of water = 96 g
Initial temperature = 113°C
Final temperature = ?
Amount of energy transfer = 1.9 Kj (1.9×1000 = 1900 j)
Specific heat capacity of aluminium = 0.897 j/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Now we will put the values in formula.
Q = m.c. ΔT
1900 j = 96 g × 0.897 j/g.°C × T2 - 113°C
1900 j = 86.112 j/°C × T2 - 113°C
1900 j / 86.112 j/°C = T2 - 113°C
22.1°C + 113°C = T2
T2 = 135.1°C
Chris is correct because the reactants and products do not have to have the same mass, but they do have to weigh the same. Is the correct answer:) Hannah is right because the mass of the reactants was different than the mass of the products. is incorrect
Answer:
c
Explanation:
plants decrease the levels of carbon dioxide in the atmosphere due to the process of photosynthesis