The oxidation state of the atoms of any molecule in the element state equals zero. H2 is is the element state, therefore the oxidation state of the whole molecule equals zero and the oxidation states of the atoms also equals zero. Answer letter D is the correct answer.
Magnesium has an oxidation state = zero before it undergoes the reaction and is oxidized. The oxidations state of the magnesium in Mg(OH)2 is +2.
Answer:
0.75 moles
Explanation:
S2 + 2O2 = 2SO2
From the reaction above,
We see that number of moles attached to S2 is 1 and number of moles attached to SO2 is 2.
Since we want to find how many moles of S2 are needed to produce 1.50 moles of SO2 gas
The answer is gotten by proportion;
Number of moles = 1/2 × 1.5 = 0.75 moles
<u>Answer:</u> The
for the reaction is -1406.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The chemical reaction for the formation reaction of
is:

The intermediate balanced chemical reaction are:
(1)
( × 6)
(2)
( × 3)
(3)
( × 2)
(4)

The expression for enthalpy of formation of
is,
![\Delta H^o_{formation}=[6\times \Delta H_1]+[3\times \Delta H_2]+[2\times \Delta H_3]+[1\times \Delta H_4]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Bformation%7D%3D%5B6%5Ctimes%20%5CDelta%20H_1%5D%2B%5B3%5Ctimes%20%5CDelta%20H_2%5D%2B%5B2%5Ctimes%20%5CDelta%20H_3%5D%2B%5B1%5Ctimes%20%5CDelta%20H_4%5D)
Putting values in above equation, we get:
![\Delta H^o_{formation}=[(-74.8\times 6)+(-185\times 3)+(323\times 2)+(-1049\times 1)]=-1406.8kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Bformation%7D%3D%5B%28-74.8%5Ctimes%206%29%2B%28-185%5Ctimes%203%29%2B%28323%5Ctimes%202%29%2B%28-1049%5Ctimes%201%29%5D%3D-1406.8kJ)
Hence, the
for the reaction is -1406.8 kJ.
Yes Animal and plant are cell living