Answer:
By far the most important use of alkenes is in the making of plastics as plastics are used in almost everything.
Explanation:
Alkenes themselves aren't used much in everyday life however Alkenes are very important to industrial synthesis as it is relatively easy to turn them into other things.
Alkenes can be turned into polymers or plastics through addition reactions and the most common ethene is turned into everything from plastic bags to bottles.
Alkenes can also be turned into alcohols. most commonly propene is used as a feedstock to produce butanol and other products useful in industry or for production
Explanation:
Can you be my friend in here
The density of ice is 0.9167 g/cm<span>3</span>
Answer: b.) they tend to lose electrons to gain stability
Explanation:
Answer: 11, Na, 23, 100, −9.529 ... phosphorus, 15, P, 31, 100, −24.441 ... manganese, 25, Mn, 55, 100, −57.706.
Explanation: Make me Brainelist
Answer: The density of 0.50 grams of gaseous carbon stored under 1.50 atm of pressure at a temperature of -20.0 °C is 0.867 g/L.
Explanation:
- d = m/V, where d is the density, m is the mass and V is the volume.
- We have the mass m = 0.50 g, so we must get the volume V.
- To get the volume of a gas, we apply the general gas law PV = nRT
P is the pressure in atm (P = 1.5 atm)
V is the volume in L (V = ??? L)
n is the number of moles in mole, n = m/Atomic mass, n = 0.50/12.0 = 0.416 mole.
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature in K (T(K) = T(°C) + 273 = -20.0 + 273 = 253 K).
- Then, V = nRT/P = (0.416 mol)(0.082 L.atm/mol.K)(253 K) / (1.5 atm) = 0.576 L.
- Now, we can obtain the density; d = m/V = (0.50 g) / (0.576 L) = 0.867 g/L.