Answer: Phillip is correct. The triangles are <u>not </u>congruent.
How do we know this? Because triangle ABC has the 15 inch side between the two angles 50 and 60 degrees. The other triangle must have the same set up (just with different letters XYZ). This isn't the case. The 15 inch side for triangle XYZ is between the 50 and 70 degree angle.
This mismatch means we cannot use the "S" in the ASA or AAS simply because we don't have a proper corresponding pair of sides. If we knew AB, BC, XZ or YZ, then we might be able to use ASA or AAS.
At this point, there isn't enough information. So that means John and Mary are incorrect, leaving Phillip to be correct by default.
Note: Phillip may be wrong and the triangles could be congruent, but again, we don't have enough info. If there was an answer choice simply saying "there isn't enough info to say either if the triangles are congruent or not", then this would be the best answer. Unfortunately, it looks like this answer is missing. So what I bolded above is the next best thing.
I think it's true because its the same data set just put in order backwards.
Hope this helps!! :-)
Answer:
y = negative 2 x + 9
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given that,
f(3) = 2
f'(3) = 5.
We want to estimate f(2.85)
The linear approximation of "f" at "a" is one way of writing the equation of the tangent line at "a".
At x = a, y = f(a) and the slope of the tangent line is f'(a).
So, in point slope form, the tangent line has equation
y − f(a) = f'(a)(x − a)
The linearization solves for y by adding f(a) to both sides
f(x) = f(a) + f'(a)(x − a).
Given that,
f(3) = 2,
f'(3) = 5
a = 3, we want to find f(2.85)
x = 2.85
Therefore,
f(x) = f(a) + f'(a)(x − a)
f(2.85) = 2 + 5(2.85 - 3)
f(2.85) = 2 + 5×-0.15
f(2.85) = 2 - 0.75
f(2.85) = 1.25