Answer:
I just guessed it out to be 3
For the reaction 2 K + F2 --> 2 KF,
consider K atomic wt. = 39
23.5 g of K = 0.603 moles, hence following the molar ratio of the balanced equation, 0.603 moles of potassium will use 0.3015 moles of F2. (number of moles, n = 0.3015)
Now, following the ideal gas equation, PV = nRT
P = 0.98 atm
V = unknown
n = 0.3015 moles
R = 82.057 cm^3 atm K^-1mole^-1 (unit of R chosen to match the units of other parameters; see the reference below)
T = 298 K
Solving for V,
V = (nRT)/P = (0.3015 mol * 82.057 cm^3 atm K^-1 mol^-1 * 298 K)/(0.98 atm)
solve it to get 7517.6 cm^3 as the volume of F2 = 7.5176 liters of F2 gas is needed.
2. Use the formula: volume1 * concentration 1 = volume 2 * concentration 2
where, volume 1 and concentration 1 are for solution 1 and volume 2 and solution 2 for solution 2.
Solution 1 = 12.3 M NaOH solution
Solution 2 = 1.2 M NaOH solution
<span>
Solving for volume 1, volume 1 = (12.4 L * 1.2 M)/12.3 M = 0.1366 L </span>
Answer :
The balanced chemical reaction will be,

Explanation :
Balanced chemical reaction : It is defined as the reaction in which the number of atoms of individual elements present on reactant side must be equal to the product side.
If the amount of atoms of each type on the left and right sides of a reaction differs then to balance the equation by adding coefficient in the front of the elements or molecule or compound in the chemical equation.
The coefficient tell us about that how many molecules or atoms present in the chemical equation.
When sulfuric acid react with potassium hydroxide then it react to give potassium sulfate and water as a product. This reaction is known as acid-base reaction.
The balanced chemical reaction will be,

The transition metals are a group of metals that are found in the middle of the periodic table. ... They are also harder than the post transition metals. They make colorful chemical compounds with other elements. Most of them have more than one oxidation state.
Answer:
Explanation:
According to legend, Galileo dropped weights off of the Leaning Tower of Pisa, showing that gravity causes objects of different masses to fall with the same acceleration. In recent years, researchers have taken to replicating this test in a way that the Italian scientist probably never envisioned — by dropping atoms. One of Galileo's contributions to the founding of modern science was his study of falling objects. He turned, then, to measuring the acceleration of objects rolling down smooth ramps. The ramp "diluted" the acceleration to a value small enough to allow accurate measurements of the longer time intervals.