Answer:
TIMED HELP ASAP
19.11 g of MgSO₄ is placed into 100.0 mL of water. The water's temperature increases by 6.70°C. Calculate ∆H, in kJ/mol, for the dissolution of MgSO₄. (The specific heat of water is 4.184 J/g・°C and the density of the water is 1.00 g/mL). You can assume that the specific heat of the solution is the same as that of water.
Stimuli that can make you run faster:
1. sound: if you hear a wild animal running after you that will make you run faster
2. vision: viewing something scary or unpleasant acts as a stimuli to make you run faster
3. pain: pain as a stimulus will make you run faster as it your bodies way of protecting you from harm
Hope this helps good luck <span />
No, the biosphere does not exhibit a clear boundary as life always comes to an end.
The biosphere comprises all the living things of the world, like all the plants and animals. It is considered as the global ecosystem, that is, the gathering of all the planet's ecosystems. It comprises the land and the atmosphere. It is usually considered as the zone of life, where all the species of the planet thrives.
Answer:
CaF2 will not precipitate
Explanation:
Given
Volume of Ca(NO3)2
ml
Molar concentration of Ca(NO3)2 
Volume of NaF
ml
Molar concentration of NaF 
Ksp for CaF2 
CaF2 will precipitate if Q for the reaction is greater than ksp of CAF2
Moles of calcium ion

![[Ca2+] = \frac{0.01}{10 + 10} \\= \frac{0.01}{20} \\= 5 * 10^{-4}](https://tex.z-dn.net/?f=%5BCa2%2B%5D%20%3D%20%5Cfrac%7B0.01%7D%7B10%20%2B%2010%7D%20%5C%5C%3D%20%5Cfrac%7B0.01%7D%7B20%7D%20%5C%5C%3D%205%20%2A%2010%5E%7B-4%7D)
Moles of F- ion

![[F-] = \frac{0.001}{10 + 10} \\= \frac{0.001}{20} \\= 5 * 10^{-5}](https://tex.z-dn.net/?f=%5BF-%5D%20%3D%20%5Cfrac%7B0.001%7D%7B10%20%2B%2010%7D%20%5C%5C%3D%20%5Cfrac%7B0.001%7D%7B20%7D%20%5C%5C%3D%205%20%2A%2010%5E%7B-5%7D)
![Q = [Ca2+] [F-]^2\\= (5 * 10^{-4}) * (0.5* 10^-4)\\= 1.25 * 10^{-12}](https://tex.z-dn.net/?f=Q%20%3D%20%5BCa2%2B%5D%20%5BF-%5D%5E2%5C%5C%3D%20%285%20%2A%2010%5E%7B-4%7D%29%20%2A%20%280.5%2A%2010%5E-4%29%5C%5C%3D%201.25%20%2A%2010%5E%7B-12%7D)
Q is lesser than Ksp value of CaF2. Hence it will not precipitate
Same as balancing a regular chemical reaction! Please see the related question to the bottom of this answer for how to balance a normal chemical reaction. This is for oxidation-reduction, or redox reactions ONLY! These instructions are for how to balance a reduction-oxidation, or redox reaction in aqueous solution, for both acidic and basic solution. Just follow these steps! I will illustrate each step with an example. The example will be the dissolution of copper(II) sulfide in aqueous nitric acid, shown in the following unbalanced reaction: CuS (s) + NO 3 - (aq) ---> Cu 2+ (aq) + SO 4 2- (aq) + NO (g) Step 1: Write two unbalanced half-reactions, one for the species that is being oxidized and its product, and one for the species that is reduced and its product. Here is the unbalanced half-reaction involving CuS: CuS (s) ---> Cu 2+ (aq) + SO 4 2- (aq) And the unbalanced half-reaction for NO 3 - is: NO 3 - (aq) --> NO (g) Step 2: Insert coefficients to make the numbers of atoms of all elements except oxygen and hydrogen equal on the two sides of each half-reaction. In this case, copper, sulfur, and nitrogen are already balanced in the two half-reaction, so this step is already done here. Step 3: Balance oxygen by adding H 2 O to one side of each half-reaction. CuS + 4 H 2 O ---> Cu 2+ + SO 4 2- NO 3 - --> NO + 2 H 2 O Step 4: Balance hydrogen atoms. This is done differently for acidic versus basic solutions. . For acidic solutions: Add H 3 O + to each side of each half-reaction that is "deficient" in hydrogen (the side that has fewer H's) and add an equal amount of H 2 O to the other side. For basic solutions: add H 2 O to the side of the half-reaction that is "deficient" in hydrogen and add an equal amount of OH - to the other side. Note that this step does not disrupt the oxygen balance from Step 3. In the example here, it is in acidic solution, and so we have: CuS + 12 H 2 O ---> Cu 2+ + SO 4 2- + 8 H 3 O + . NO 3 - + 4 H 3 O + --> NO + 6 H 2 O Step 5: Balance charge by inserting e - (electrons) as a reactant or product in each half-reaction. Oxidation: CuS + 12 H 2 O ---> Cu 2+ + SO 4 2- + 8 H 3 O + + 8 e - . Reduction: NO 3 - + 4 H 3 O + + 3 e - --> NO + 6 H 2 O . Step 6: Multiply the two half-reactions by numbers chosen to make the number of electrons given off by the oxidation step equal to the number taken up by the reduction step. Then add the two half-reactions. If done correctly, the electrons should cancel out (equal numbers on the reactant and product sides of the overall reaction). If H 3 O + , H 2 O, or OH - appears on both sides of the final equation, cancel out the duplication also. Here the oxidation half-reaction must be multiplied by 3 (so that 24 electrons are produced) and the reduction half-reaction must by multiplied by 8 (so that the same 24 electrons are consumed). 3 CuS + 36 H 2 O ---> 3 Cu 2+ + 3 SO 4 2- + 24 H 3 O + + 24 e - 8 NO 3 - + 32 H 3 O + + 24 e - ---> 8 NO + 48 H 2 O Adding these two together gives the following equation: 3 CuS + 36 H 2 O + 8 NO 3 - + 8 H 3 O + ---> 3 Cu 2+ + 3 SO 4 2- + 8 NO + 48 H 2 O Step 7: Finally balancing both sides for excess of H 2 O (On each side -36) This gives you the following overall balanced equation at last: 3 CuS (s) + 8 NO 3 - (aq) + 8 H 3 O + (aq) ---> 3 Cu 2+ (aq) + 3 SO 4 2- (aq) + 8 NO (g) + 12 H 2 O (l)