Answer:
In addition, from the response shown, using a graphical calculator brings the following benefits:
1) You can write the system of linear equations as big as you want. This is: systems 3 * 3, 4 * 4, 5 * 5.
2) The response to systems of equations greater than 2 * 2 can be complicated when you graph the solution, therefore, the graphing calculator can be much more efficient in these cases.
3) You can write the linear equations in any way. Resolving by hand you should probably rewrite the system of equations to find the solution.
Step-by-step explanation:
Answer:
Step-by-step explanation:
We would use the t- distribution.
From the information given,
Mean, μ = 2950
Standard deviation, σ = 115
number of sample, n = 25
Degree of freedom, (df) = 25 - 1 = 24
Alpha level,α = (1 - confidence level)/2
α = (1 - 0.98)/2 = 0.01
We will look at the t distribution table for values corresponding to (df) = 24 and α = 0.01
The corresponding z score is 2.492
We will apply the formula
Confidence interval
= mean ± z ×standard deviation/√n
It becomes
2950 ± 2.492 × 115/√25
= 2950 ± 2.492 × 23
= 2950 ± 57.316
The lower end of the confidence interval is 2950 - 57.316 =2892.68
The upper end of the confidence interval is 2950 + 57.316 = 3007.32
The solution is correct.
Answer:
<h3>-10⇜</h3>
Step-by-step explanation:
AB=-6×-5÷-1×3
AB= 30÷-3
<h3>AB= -10⇚</h3>
B. I do know if it’s a triangle but 180 degrees is what you need to get to so 104+76=180
The 3rd slot is the answer you are looking for