Answer:
a) There are
electrons in a liter of water.
b) The net charge is -53601707,1 C
Explanation:
a) To find out how many electrons are in a liter of water (equivalent to 1000 grams of water), we have to find out how many molecules of water there are and then multiply it by 10 (e- per molecule).
We can find out how many molecules are by finding the number of moles and then multiplying it by Avogadro's number (number of elements per mol):

b) As all electrons have the same charge, in order to find the net charge of those electrons we have to multiply the charge of a single electron by the number of electrons:

An important clarification is that while the net charge may seem huge, water as a whole is a neutral medium, because there are as many protons as there are electrons, and as they have the same charge, the net charge of water is 0.
I can’t do that you have to!
Answer:
Explanation:
This problem is based on conservation of rotational momentum.
Moment of inertia of rod about its center
= 1/12 m l² , m is mass of the rod and l is its length .
= 1 / 12 x 4.6 x .11²
I = .004638 kg m²
The angular momentum of the bullet about the center of rod = mvr
where m is mass , v is perpendicular component of velocity of bullet and r is distance of point of impact of bullet fro center .
5 x 10⁻³ x v sin60 x .11 x .5 where v is velocity of bullet
According to law of conservation of angular momentum
5 x 10⁻³ x v sin60 x .11 x .5 = ( I + mr²)ω , where ω is angular velocity of bullet rod system and ( I + mr²) is moment of inertia of bullet rod system .
.238 x 10⁻³ v = ( .004638 + 5 x 10⁻³ x .11² x .5² ) x 12
.238 x 10⁻³ v = ( .004638 + .000015125 ) x 12
.238 x 10⁻³ v = 55.8375 x 10⁻³
.238 v = 55.8375
v = 234.6 m /s
1 is when the breath and 2 when they poop and 3 when they die and decompose into the ground
Answer:
Interstellar dust
Explanation:
In modern solar system theory of condensation, interstellar dust, which was lacking in nebular theory, would be the essential component.Cosmic dust is dust that exists in outer space or that has fallen to earth, also called extra-terrestrial dust or spatial powder. The majority of the cosmic dust particle sizes range from a few molecules to 0.1 μm.