In the field of electromagnetism, when two charged plates that are situated opposite to each other by a certain distance, it forms an energy called the electric field. This energy is due to the difference in potential energy with respect to distance. Thus,
E = V/d
However, the voltage in volts is energy per coulomb. Thus,
V = (8x10-17 J/electron)*(1electron/1.60218x10^-19 C)
V = 499.32 volts
Therefore,
E = 499.32 volts /2.5 m
E = 199.73 N/C
The electric field that caused the change in potential energy is equal to 199.73 Newtons per Coulomb.
Explanation:
Sorry but thee is none options for me to choose
Answer: a) the greater speed for the ball is getting with the large radius of the circle. b) 1.68* 10 ^3 m/s^2 c) 1.25*10^3 m/s^2
Explanation: In order to solve this problem firstly we have to consider that speed in a of the circular movement is directly the angular rotation multiply the radius of the circle so by this we found that the second radius get large speed.
Secondly to calculate the centripetal acceleration for the ball we have to considerer the relationship given by:
acceleration in a circular movement= ω^2*r
so
a1= (8.44 *2*π)^2*r1=1.68 *10^3 m/s^2
a2= (5.95*2*π)^2*r2=1.25*10^3 m/s^2
Answer:
The magnitude of momentum of the airplane is
.
Explanation:
Given that,
Mass of the airplane, m = 3400 kg
Speed of the airplane, v = 450 miles per hour
Since, 1 mile per hour = 0.44704 m/s
v = 201.16 m/s
We need to find the magnitude of momentum of the airplane. It is given by the product of mas and velocity such that,



or

So, the magnitude of momentum of the airplane is
. Hence, this is the required solution.
Answer:
the correct representation of the trough is b