Hey there!
Volume in mL :
1.68 L * 1000 => 1680 mL
Density = 0.921 g/mL
Therefore:
Mass = density * Volume
Mass = 0.921 * 1680
Mass = 1547.28 g
Answer:
5.96 g/cm^3
Explanation:
Corner atom = 1/8
Atoms in center = 1
Atoms in face of the cube= 1/2
Molar mass of V = 50.94 g/mol <em>(from period table)</em>
1 mole = 6.02x10^23
<em>In BCC unit cell:</em>
(8 x 1/8)+ 1=2 per 1 unit cell
<em>Mass: </em>2(50.94g)/6.02x10^23 = 1.69x10^-22 g/unit cell
305pm=(305x10^-12m÷10^-2m) x (1mL÷1cm^3)
= 2.837 x 10^-23 mL
<em>1pm=10^-12m</em>
<em>1cm=10^-2m</em>
<em>1mL=1cm^3</em>
<em></em>
density=mass/volume
density of V = 1.69x10^-22g÷2.837x10^-23mL
=5.957g/mL
=5.96g/cm^3
When the concentrations of CO2 and H2CO3 are both horizontal lines then the rate of the forward reaction is the same as the rate of the reverse reaction.
<h3>What is rate of reaction?</h3>
The term rate of reaction refers to how fast or slow a reaction proceeds. Recall that the rate of reaction is measured from the rate of disappearance of reactants or the rate of appearance of products.
When the [CO2] and [H2CO3 ] are both horizontal lines, the rate of the forward reaction is the same as the rate of the reverse reaction.
Let us recall that the reaction is reversible hence addition of H2CO3 will increase the concentration of H2CO3, the reverse reaction would be favored.
Learn more about rate of reaction: brainly.com/question/8592296
The heat of solution is -51.8 kJ/mol
<h3>What is the heat of solution?</h3>
We know that in a calorimeter, there is no loss or gain of energy. It is a good example of a closed system.
Number of moles of KOH = 11.9-g/56 g/mol = 0.21 moles
Temperature rise = 26.0 ∘c
Mass of the water = 100.0 grams
Heat capacity = 4.184 j/g⋅°c
Then;
ΔH = mcθ
ΔH = 100g * 4.184 j/g⋅°c * 26.0 ∘c = 10.88 kJ
Heat of solution = -(10.88 kJ/ 0.21 moles) = -51.8 kJ/mol
Learn more about heat of solution:brainly.com/question/24243878
#SPJ1