Answer:
2.82 L
T₁ = 303 K
T₂ = 263 K
The final volume is smaller.
Explanation:
Step 1: Given data
- Initial temperature (T₁): 30 °C
- Initial volume (V₁): 3.25 L
- Final temperature (T₂): -10 °C
Step 2: Convert the temperatures to Kelvin
We will use the following expression.
K = °C + 273.15
T₁: K = 30°C + 273.15 = 303 K
T₂: K = -10°C + 273.15 = 263 K
Step 3: Calculate the final volume of the balloon
Assuming constant pressure and ideal behavior, we can calculate the final volume using Charles' law. Since the temperature is smaller, the volume must be smaller as well.
V₁/T₁ = V₂/T₂
V₂ = V₁ × T₂/T₁
V₂ = 3.25 L × 263 K/303 K = 2.82 L
Explain whether this is a chemical or physical change, and why. does it involve elements, compounds, mixtures, or pure substances?
If the process involves a chemical reaction then surely it is a chemical change where new bonds are being formed from the collision of the reactants.
Describe how many atoms are involved before and after. what do you notice about the number of atoms?
From the balanced chemical reaction, we see that we need 1 mol of N2 gas and 3 mol of H2 in order to form 2 mol of NH3.
Answer:
bleaching powder is actually a mixture of calcium chloride, calcium hydroxide and calcium hypochlorite. hence it is not a single salt. It is not completely soluble in water as it composed of heavy calcium salts, which are known to be insoluble in water.
Answer:
The concentration of HA is the same as concentration of H3O+ and A- produced.
Explanation:
The dissociation equation is given below:
HA(aq) + H2O (l) —> H3O+(aq) + A-(aq)
From the reaction above, we can see that the acid is monoprotic acid i.e it has only 1 ionisable hydrogen atom.
Now, from the balanced equation, we can see that the acid produced equal concentration of H3O+ and A-.
This account for the reason why the bars for H3O+ and A- have the same height as the bar for HA.