Answer:
Percentage lithium by mass in Lithium carbonate sample = 19.0%
Explanation:
Atomic mass of lithium = 7.0 g; atomic mass of Chlorine = 35.5 g; atomic mass of carbon = 12.0 g; atomic mass of oxygen = 16.0 g
Molar mass of lithium chloride, LiCl = 7 + 35.5 = 42.5 g
Percentage by mass of lithium in LiCl = (7/42.5) * 100% = 16.4 % aproximately 16%
Molar mass of lithium carbonate, Li₂CO₃ = 7 * 2 + 12 + 16 * 3 =74.0 g
Percentage by mass of lithium in Li₂CO₃ = (14/74) * 100% = 18.9 % approximately 19%
Mass of Lithium carbonate sample = 2 * 42.5 = 85.0 g
mass of lithium in 85.0 g Li₂CO₃ = 19% * 85.0 g = 16.15 g
Percentage by mass of lithium in 85.0 g Li₂CO₃ = (16.15/85.0) * 100 % = 19.0%
Percentage lithium by mass in Lithium carbonate sample = 19.0%
Answer:
What mass (g) of barium iodide is contained in 188 mL of a barium iodide solution that has an iodide ion concentration of 0.532 M?
A) 19.6
B) 39.1
C) 19,600
D) 39,100
E) 276
The correct answer to the question is
B) 39.1 grams
Explanation:
To solve the question
The molarity ratio is given by
188 ml of 0.532 M solution of iodide.
Therefore we have number of moles = 0.188 × 0.532 M = 0.100016 Moles
To find the mass, we note that the Number of moles =
from which we have
Mass = Number of moles × molar mass
Where the molar mass of Barium Iodide = 391.136 g/mol
= 0.100016 moles ×391.136 g/mol = 39.12 g
There are 3 significant figures. Significant numbers are the numbers that build up your total number. 1-9 always count, 0 only counts if it’s after another number. For example: 0,901 has 3 significant numbers as does 0,910. 9,10 also has 3. 0,09 has just 1.
Answer: The balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is
.
Explanation:
When a substance tends to gain oxygen atom in a chemical reaction and loses hydrogen atom then it is called oxidation reaction.
For example, chemical equation for oxidation of methane is as follows.

Number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
To balance this equation, multiply
by 2 on reactant side. Also, multiply
by 2 on product side. Hence, the equation can be rewritten as follows.

Now, the number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
Since, the atoms present on both reactant and product side are equal. Therefore, this equation is now balanced.
Thus, we can conclude that balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is
.