1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksian1 [2.3K]
3 years ago
5

How far is Maine's capital city from Florida's capital city?

Mathematics
1 answer:
soldier1979 [14.2K]3 years ago
7 0

Answer:

1,650 miles

Step-by-step explanation:

You might be interested in
Classrooms on one side of the science building are all numbered with consecutive odd integers. If the first​ room, the room with
liubo4ka [24]

Answer:

The sum of the first five classroom numbers in a row is 5k + 20

Step-by-step explanation:

Since the smallest classroom​ number on the side of the building is numbered k​ and each consecutive odd integer is separated by a difference of  

2.

Therefore:  

k is the first class room.

k +  2  is the second class room.

k +  4  is the third class room.

k + 6 is the third class room.

k + 8 is the fifth class room.

The sum of the five consecutive class rooms are given as:

k + (k + 2) + (k + 4) + (k + 6) + (k + 8)

collecting alike terms we get

=  k + k + k + k + k + 2 + 4 + 6 + 8

= 5k + 20

Therefore, The sum of the first five classroom numbers in a row is 5k + 20.

8 0
3 years ago
Emily tossed a die onto a black and red checkerboard. what is the probability that it will land with a value of 2, on a red squa
Oxana [17]
1/2 becuase they are in between i think hope this helps
7 0
3 years ago
Read 2 more answers
James m
nadezda [96]
B ifffh my sdtvhh by has the
4 0
3 years ago
Read 2 more answers
What is the probability that a point chosen at random in the triangle is also in the blue square?
matrenka [14]

The <u>probability</u> that a point <u>chosen at random</u> in the triangle is also in the blue square can be calculated using <u>geometrical definition of the probability</u>:

Pr=\dfrac{\text{desired area}}{\text{total area}}.

1. Find the total area of the triangle:

A_{total}=\dfrac{1}{2}\cdot 6\cdot 9=27\ in^2.

2. Find the desired area of the square:

A_{desired}=3\cdot 3=9\ in^2.

Then the probability is

Pr=\dfrac{9}{27}=\dfrac{1}{3}.

Answer: correct choice is B

8 0
3 years ago
Literally the last question pls get it right
Anna11 [10]
-1 or option c is correct. Use the given functions to set up and simplify f(−2).
5 0
3 years ago
Read 2 more answers
Other questions:
  • Simplify<br> (y + 1)<br> (y + 1)?
    11·1 answer
  • The rectangle has a total area of (4x + 36) square feet. factor 4x+ 36
    14·2 answers
  • Solve for r. r+2 /8 =3/2
    5·2 answers
  • The low temperatures for a week in Edmonton, Alberta are -15 C, -12 C, -10 C, -12 C, -18 C, -20 C, and -25 C. What is the mean l
    9·1 answer
  • The position function of a particle in rectilinear motion is given by s(t) = 2t3 – 21t2 + 60t + 3 for t ≥ 0 with t measured in s
    15·1 answer
  • *PLEASE HELP ME* WILL REWARD BRANLIEST
    11·1 answer
  • Find the midpoint of the line segment with end coordinates of: ( 1 , 7 ) and ( 3 , − 2 ) Give coordinates as decimals where appr
    15·2 answers
  • A rectangle is 64cm long 40cm wide find is area and perimeter
    12·2 answers
  • Help w y math shawtys
    15·1 answer
  • Can someone answer my earlier question in math its 20 points
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!