Considerando las fórmulas para el perímetro y el área de un rectángulo, hay que se chega en una <u>eccuación cuadrática sin solución</u>, o sea, las medidas no son posibles y la persona estaba mintiendo.
<h3>¿Cuál es la fórmula para el perímetro y el área de un rectángulo?</h3>
Considerando que las dimensiones son l y w, hay que:
- El perímetro es: P = 2(l + w).
El <u>perímetro es de 18 m</u>, o sea:
2(l + w) = 18
l + w = 9
l = 9- w.
El <u>área es de 21 m²</u>, o sea:
lw = 21
(9- w)w = 21
-w² + 9 - 21 = 0
w² - 9w + 21 = 0
El discriminante es dado por:
D = 9² - 4 x 1 x 21 = -3.
El discriminante negativo implica que la <u>eccuación cuadrática no tiene solución</u>, o sea, las medidas no son posibles y la persona estaba mintiendo.
Puede-se aprender más a cerca de el perímetro y el área de un rectángulo en brainly.com/question/26475963
#SPJ1
Answer:
1. Josh's father: f Josh: f/2 - 2
2. f + (f/2 - 2) ≥ 49
3. 3/2 f - 2 ≥ 49
3/2 f ≥ 51
3f ≥ 102
f ≥ 34
4. 34
Answer:
the 1st option
Step-by-step explanation:
Answer:
2125000
Step-by-step explanation:
Answer:
the greatest possible length of each square plot is 1 ft.
1,269 square plots
Step-by-step explanation:
Since the plots are going to be squares then the width and length need to be the same. This means that the largest size of these plots would be calculated as the largest common divisor of the length and width of the garden. In this scenario, since 47 only has two divisors 1 and 47, and 27 is not divisible by 47 then the GCD of these two numbers would be 1. Meaning that the greatest possible length of each square plot is 1 ft.
To calculate the total number of plots needed we divide the square footage of the garden by the square footage of each individual plot like so...
47 * 27 = 1,269 sq. ft.
1 * 1 = 1 sq. ft.
1,269 / 1 = 1,269 plots
Finally, we see that we need a total of 1,269 square plots to cover that same area of the garden.