Answer:
4.2 x 10⁷N
Explanation:
Given parameters:
Charge on ball:
q₁ = 3C
q₂ = 14C
Distance between balls = 9000m
Unknown:
Force acting on the two balls
Solution:
The force experienced by the two charges is given by coulombs law. It is mathematically expressed as;
F = 
where k = 9 x 10⁹Nm²/C²
q is the charges
r is the distance
Input the variables and solve;
F =
= 4.2 x 10⁷N
Answer:
A) The net force
Explanation:
If two forces of equal strength act on an object in opposite directions, the forces will cancel, resulting in a net force of zero and no movement.
I believe it is noise pollution
Answer: 0.4 m
Explanation:
Given
Speed of ambulance, vs = 61.9 m/s
Speed of car = 28.5 m/s
Frequency of ambulance siren, f = 694 Hz
Velocity of sound in air, v = 343 m/s
With speed of ambulance being (61.9 m/s) -> We solve using
fd = f(v + vr) / (v - vs), where vr = 0
fd = 694 * (343 + 0) / (343 - 61.9)
fd = 694 * (343 / 281.1)
fd = 694 * 1.22
fd = 847 Hz
Recall,
λ = v/f
λ = 343/847
λ = 0.4 m
Therefore, the wavelength of the sound of the ambulance’s siren if you are standing at the position of the car is 0.4 m
Answer:
0.739
Explanation:
If we treat the four tire as single body then
W ( weight of the tyre ) = mass × acceleration due to gravity (g)
the body has a tangential acceleration = dv/dt = 5.22 m/s², also the body has centripetal acceleration to the center = v² / r
where v is speed 25.6 m/s and r is the radius of the circle
centripetal acceleration = (25.6 m/s)² / 130 = 5.041 m/s²
net acceleration of the body = √ (tangential acceleration² + centripetal acceleration²) = √ (5.22² + 5.041²) = 7.2567 m/s²
coefficient of static friction between the tires and the road = frictional force / force of normal
frictional force = m × net acceleration / m×g
where force of normal = weight of the body in opposite direction
coefficient of static friction = (7.2567 × m) / (9.81 × m)
coefficient of static friction = 0.739