1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ostrovityanka [42]
2 years ago
13

How to install goodman heat pump with ducting apartment

Physics
1 answer:
Helga [31]2 years ago
8 0

Answer:

Explanation:

Use a pump for that u poor man

You might be interested in
A proton is accelerated from rest through a potential difference of 2.5 kV and then moves perpendicularly through a uniform 0.60
Bumek [7]

Answer:

1.2cm

Explanation:

V=(2ev/m)^1/2

=(2*1.6*10^19 x2500/ 1.67*10^27)^1/2

=6.2x10^5m/s

Radius of resulting path= MV/qB

= 1.67*10^-27x6.92*10^6/1.6*10^-16 x0.6

=0.012m

=1.2cm

5 0
3 years ago
Read 2 more answers
2 Physic Questions For 20 Points ✨
Anna [14]
Jupiter Cannot Become A Star.
Jupiter Is The Fastest Spinning Planet In The Solar System.
The Clouds On Jupiter Are Only 50 km Thick.
8 0
3 years ago
Sound waves travel fastest through a A) gas. B) liquid. C) solid. D) vacuum.
earnstyle [38]

Sound waves travel faster through <em>solids</em> than they do through gases or liquids.  <em>(C)  </em>They don't travel through vacuum at all.

Example:

Speed of sound in normal air . . . around 340 m/s

Speed of sound in water . . . around 1,480 m/s

Speed of sound in iron . . . around 5,120 m/s

3 0
3 years ago
Read 2 more answers
What is the total kinetic energy of a 0.15 kg hockey puck sliding at 0.5 m/s and rotating about its center at 8.4 rad/s
AlexFokin [52]

Answer:

K=0.023J

Explanation:

From the question we are told that:

Mass m=0.15

Velocity v=0.5m/s

Angular Velocity \omega=8.4rad/s

Generally the equation for Kinetic Energy is mathematically given by

K=\frac{1}{2}M(v^2+\frac{1}{2}R^2\omega^2)

K=\frac{1}{2}0.15(0.5^2+\frac{1}{2}(0.038)^2.(8.4rad/s^2))

K=0.023J

8 0
3 years ago
A sample of monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A). It is warmed at constant volume to
leonid [27]

Answer:

(a) 0.203 moles

(b) 900 K

(c) 900 K

(d) 15 L

(e) A → B, W = 0, Q = Eint = 1,518.91596 J

B → C, W = Q ≈ 1668.69974 J Eint = 0 J

C → A, Q = -2,531.5266 J, W = -1,013.25 J, Eint = -1,518.91596 J

(g) ∑Q = 656.089 J, ∑W =  655.449 J, ∑Eint = 0 J

Explanation:

At point A

The volume of the gas, V₁ = 5.00 L

The pressure of the gas, P₁ = 1 atm

The temperature of the gas, T₁ = 300 K

At point B

The volume of the gas, V₂ = V₁ = 5.00 L

The pressure of the gas, P₂ = 3.00 atm

The temperature of the gas, T₂ = Not given

At point C

The volume of the gas, V₃ = Not given

The pressure of the gas, P₃ = 1 atm

The temperature of the gas, T₂ = T₃ = 300 K

(a) The ideal gas equation is given as follows;

P·V = n·R·T

Where;

P = The pressure of the gas

V = The volume of the gas

n = The number of moles present

R = The universal gas constant = 0.08205 L·atm·mol⁻¹·K⁻¹

n = PV/(R·T)

∴ The number of moles, n = 1 × 5/(0.08205 × 300) ≈ 0.203 moles

The number of moles in the sample, n ≈ 0.203 moles

(b) The process from points A to B is a constant volume process, therefore, we have, by Gay-Lussac's law;

P₁/T₁ = P₂/T₂

∴ T₂ = P₂·T₁/P₁

From which we get;

T₂ = 3.0 atm. × 300 K/(1.00 atm.) = 900 K

The temperature at point B, T₂ = 900 K

(c) The process from points B to C is a constant temperature process, therefore, T₃ = T₂ = 900 K

(d) For a constant temperature process, according to Boyle's law, we have;

P₂·V₂ = P₃·V₃

V₃ = P₂·V₂/P₃

∴ V₃ = 3.00 atm. × 5.00 L/(1.00 atm.) = 15 L

The volume at point C, V₃ = 15 L

(e) The process A → B, which is a constant volume process, can be carried out in a vessel with a fixed volume

The process B → C, which is a constant temperature process, can be carried out in an insulated adjustable vessel

The process C → A, which is a constant pressure process, can be carried out in an adjustable vessel with a fixed amount of force applied to the piston

(f) For A → B, W = 0,

Q = Eint = n·cv·(T₂ - T₁)

Cv for monoatomic gas = 3/2·R

∴ Q = 0.203 moles × 3/2×0.08205 L·atm·mol⁻¹·K⁻¹×(900 K - 300 K) = 1,518.91596 J

Q = Eint = 1,518.91596 J

For B → C, we have a constant temperature process

Q = n·R·T₂·㏑(V₃/V₂)

∴ Q = 0.203 moles × 0.08205 L·atm/(mol·K) × 900 K × ln(15 L/5.00 L) ≈ 1668.69974 J

Eint = 0

Q = W ≈ 1668.69974 J

For C → A, we have a constant pressure process

Q = n·Cp·(T₁ - T₃)

∴ Q = 0.203 moles × (5/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -2,531.5266 J

Q = -2,531.5266 J

W = P·(V₂ - V₁)

∴ W = 1.00 atm × (5.00 L - 15.00 L) = -1,013.25 J

W = -1,013.25 J

Eint = n·Cv·(T₁ - T₃)

Eint = 0.203 moles × (3/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -1,518.91596 J

Eint = -1,518.91596 J

(g) ∑Q = 1,518.91596 J + 1668.69974 J - 2,531.5266 J = 656.089 J

∑W = 0 + 1668.69974 J -1,013.25 J = 655.449 J

∑Eint = 1,518.91596 J + 0 -1,518.91596 J = 0 J

5 0
3 years ago
Other questions:
  • The box plots show the summer temperatures, in degrees Fahrenheit, in two cities. Summer Temperatures in City A Summer Temperatu
    5·2 answers
  • Which best describes the relationship between humidity and air pressure?
    8·2 answers
  • The circuit element whose purpose is to convert electrical energy into another form of energy is the _____.
    15·1 answer
  • 3. A 92 kg Tarzan is holding on to a level 22m vine. He swings on the vine. What will his speed at the bottom of the swing be?
    14·1 answer
  • 3) A charged particle is moving with velocity of V in a magnetic field of B, which one of the followings is correct: A) The dire
    15·1 answer
  • Ok i bet none of you guys/girls can get this right there's three states of matter solid
    6·1 answer
  • 9. A pendulum bob is made with a ball filled with water. What would happen to the frequency of vibration of this pendulum if a h
    9·1 answer
  • What type of wave can br up to kilometers long?
    13·1 answer
  • Which describes who will record their measurements in joules?
    5·2 answers
  • A student shines a mixture of red and blue light onto a blue toy car. What colour will the car appear?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!