Answer:
We first to know that if the wheel rotates from rest means that at t=0 the velocity and the angle rotated is 0.
Then, we know:

Integrating 2 times, we have:

For the first 27.9 s, we have:
w = 37.107 rad/s
angle = 517.6426 rad
For the next seconds, according to the text, the angular velocity is constant so
w = 37.107 rad/s and hence, integrating:

Then, the time remaining is:
53.5 - 27.9 = 25.6
So for the next 25.6 seconds we have:

Finally, we add the 2 angles and we have as a result:

Answer:
Friction force is the force that one object exerts in another when the two rub against each other. Most of the time, friction force opposes the motion of an object.
Explanation:
For the answer to the question above,
we can get the number of fringes by dividing (delta t) by the period of the light (Which is λ/c).
fringe = (delta t) / (λ/c)
We can find (delta t) with the equation:
delta t = [v^2(L1+L2)]/c^3
Derivation of this formula can be found in your physics text book. From here we find (delta t):
600,000^2 x (11+11) / [(3x10^8)^3] = 2.93x10^-13
2.93x10^-13/ (589x10^-9 / 3x10^8) = 149 fringes
This answer is correct but may seem large. That is because of your point of reference with the ether which is usually at rest with respect to the sun, making v = 3km/s.
With utmost clarity, that is truest of the truths
Answer:
Width of the slit will be equal to 1.47 mm
Explanation:
We have given wavelength of the light 
Distance D = 8 m
Distance between first minimum dark fringe and the central maximum is 2 mm
So 
We have to find the width of the slit
For the first order wavelength is equal to
, here a width of slit
So 
So width of the slit will be equal to 1.47 mm