Answer:
Mia is correct, but did not show a lot of work.
Explanation:
Mia must explain her answer and give reasoning by using what knowledge she has on the subject.
Answer:
The fringes are 4.7*10^-7 m apart, such that they are adjacent.
Explanation:
Using the formula for adjacent fringes given a single slit:
Δ
Δ
Δ
Hope this helps!
Hi there! When a shadow is at its shortest is at noon when the sun is overhead.
Here molecules of gas remains constant. If more pressure is applied to the piston, gaseous molecules will come closer to each other. Hence their volume decreases and density increases. Hope this helps you.
1) D
2) D.) Greater than 
Explanation:
1)
The phenomenon of total internal reflection occurs when a ray of light hitting the interface between two mediums is totally reflected back into the original medium, therefore no refraction into the second medium occurs.
This phenomenon occurs only if two conditions are satisfied:
- The index of refraction of the first medium is larger than the index of refraction of the 2nd medium
- The angle of incidence is greater than a certain angle called critical angle
In picture 1, we have 4 different diagrams. In the diagrams:
- The red arrow represents the incident ray
- The green arrow represents the refracted ray
- The blue arrow represents the reflected ray
Total internal reflection occurs when there is no refraction, therefore when there is no green arrow: this occurs only in figure D, so this is the correct option. (in figure C, there is a refracted ray but it is parallel to the interface: this condition occurs when the angle of incidence is exactly equal to the critical angle, however in this problem, the angle of incidence is greater than the critical angle, so the correct option is D)
2)
As we stated in problem 1), total internal reflection occurs when the angle of incidence is equal or greater than the critical angle. Therefore in this case, the angle of incidence must be
D.) Greater than 