Answer: 2.04 s
Explanation:
Let the initial velocity be v, Angle of projectile be
Then the horizontal component = v cos θ = 16 m/s
Vertical component of velocity = v sin θ = 20 m/s
Time taken to reach the highest point is half the time taken for total flight.
Time for total flight,


Thus, the football takes 2.04 s to rise to the highest point of its trajectory.
Answer:
I think it’s the third one
Answer:
solution:
to find the speed of a jogger use the following relation:
V
=
d
x
/d
t
=
7.5
×m
i
/
h
r
...........................(
1
)
in Above equation in x and t. Separating the variables and integrating,
∫
d
x
/7.5
×=
∫
d
t
+
C
or
−
4.7619
=
t
+
C
Here C =constant of integration.
x
=
0 at t
=
0
, we get: C
=
−
4.7619
now we have the relation to find the position and time for the jogger as:
−
4.7619 =
t
−
4.7619
.
.
.
.
.
.
.
.
.
(
2
)
Here
x is measured in miles and t in hours.
(a) To find the distance the jogger has run in 1 hr, we set t=1 in equation (2),
to get:
= −
4.7619
=
1
−
4.7619
= −
3.7619
or x
=
7.15
m
i
l
e
s
(b) To find the jogger's acceleration in m
i
l
/
differentiate
equation (1) with respect to time.
we have to eliminate x from the equation (1) using equation (2).
Eliminating x we get:
v
=
7.5×
Now differentiating above equation w.r.t time we get:
a
=
d
v/
d
t
=
−
0.675
/
At
t
=
0
the joggers acceleration is :
a
=
−
0.675
m
i
l
/
=
−
4.34
×
f
t
/
(c) required time for the jogger to run 6 miles is obtained by setting
x
=
6 in equation (2). We get:
−
4.7619
(
1
−
(
0.04
×
6 )
)^
7
/
10=
t
−
4.7619
or
t
=
0.832
h
r
s
So the area under a velocity time graph is distance or displacement, if you have done calculus yet you will understand that if you take the integral of a velocity function then you end up with displacement. Thats for later understanding however.
So this appears to be a right triangle so we can find the area of a triangle as:
0.5bh = A
Since our area is 10 meters lets alter our formula a bit to fit the situation:
Our base here is time and our height is velocity so:
0.5tv = Δx
So we can read off the graph that our velocity at the end, or our final velocity appears to be near 2.0 m/s
So we have v, and Δx so lets isolate for time by dividing by v and 0.5
t = Δx / 0.5v
Now lets plug all that in:
t = 10 / 0.5(2)
t = 10 seconds
Hope this helped!