Answer:
(A) As it moves farther and farther from Q, its speed will keep increasing.
Explanation:
When a positive charge Q is fixed on a horizontal frictionless tabletop and a second charge q is released near to it then according to the Coulombs law the force acting on it decreases with the square of the distance between them.
Mathematically:

where:
r = distance between the charges
permittivity of free space
By the Newtons' second law of motion if the we know that the acceleration is directly proportional to the force applied. So as the distance between the charges increases the its acceleration also decreases therefore now the charge feels less acceleration but still continues to accelerate with a fading magnitude.
Explanation:
using the formula: S=ut+½gt², where u=0, S=?, g=8m/s², t=10seconds.
S=ut+½gt² ("ut" term will cancel because u=0).
=> S= ½gt²
=>S = ½×8×10²
=>S = 4×100
=>S = 400m .
Therefore, the distance traveled by the body in 10s is 400m.
hope this helps you.
Bohr's equation for the change in energy is

where
h = Planck's constant
c == the velocity of light
λ = wavelength.
The velocity is related to wavelength and frequency, f, by
c = fλ
Let us examine the given answers on the basis of the given equations.
a. As λ increases, f decreases and ΔE decreases.
TRUE
b. As λ increases, f increases and ΔE increases.
FALSE
c. As λ increases, f increases and ΔE decreases.
FALSE
Answer:
As the wavelength increases, the frequency decreases and energy decreases.
Answer:
The focal length of the given spherical mirror is 20cm.
Explanation:
plz follow me
It is true
I hope this helps