Answer:
Stunt Car A experiences a large force over a short period of time. Stunt Car B experiences a small force over a long period of time. Because of the force experienced by Stunt Car A, it will sustain more damage than Stunt Car B.
Explanation:
Both cars have the same mass and velocity, therefore they have the same momentum. During the collision, the total momentum of the car A and brick wall is conserved as well as the total momentum of the car B and the pile of leaves.
However, if we are to investigate the damage on each car, we should look at the cars not the whole system. So, the momentum difference between the cars gives us the impulse that the car felt.

Since the Car A will crash the wall quicker than the other car crashes through the pile of leaves,

which gives us
The angular frequency of this motion is 5.46 rad/s.
The oscillation of spring is an example of Simple Harmonic Motion(SHM).
The general equation of an SHM is given by the formula.
X = Acos(wt)
Here A is the amplitude
ω is the angular frequency
T is the time
Comparing the above equation with the given condition,
X = 17.4 cm cos(5.46t)
A = 17.4 cm
ω = 5.46 rad/s
T = 1 s
Hence, the angular frequency of this motion is 5.46 rad/s.
To know more about the "general equation of SHM", refer to the link below:
brainly.com/question/14869852?referrer=searchResults
#SPJ4
Answer:
let the speed of Allegra be x mph, then speed of Elliana is x+4 mph,
time to cover distance for Eliana is 2 hours, time to cover distance for Allegrais 2.5 hours,
since they both cover the same distance you have this,
distance (of Eliana) = distance (of Allegrais ),
distance=speed x time, so we have
speed (of Eliana) x time (of Eliana) = speed (of Allegra) x time (of Allegra),
2(x+4)=2.5x,
solve for x, then substitute back for speeds for Eliana and Allegra,
Eliana's speed = 16 + 4 = 20.
Allegra's speed = 16
Answer:
The answer would be B
Explanation:
The atmosphere of Venus traps in lots of what from the Sun, it is the hottest planet in our solar system because of this. CO2 is a greenhouse gas and traps in heat. So B would be your answer.
Answer:
Explanation:
a ) It is given that bomb was at rest initially , so , its momentum before the explosion was zero.
b ) We shall apply law of conservation of momentum along x and y direction separately because no external force acts on the bomb.
If v be the velocity of the third part along a direction making angle θ
with x axis ,
x component of v = vcosθ
So momentum along x axis after explosion of third part = mv cosθ
= 10 v cosθ
Momentum along x of first part = - 5 x 42 m/s
momentum of second part along x direction =0
total momentum along x direction before explosion = total momentum along x direction after explosion
0 = - 5 x 42 + 10 v cosθ
v cosθ = 21
Similarly
total momentum along y direction before explosion = total momentum along y direction after explosion
0 = - 5 x 38 + 10 v sinθ
v sinθ= 21
squaring and and then adding the above equation
v² cos²θ +v² sin²θ = 21² +19²
v² = 441 + 361
v = 28.31 m/s
Tanθ = 21 / 19
θ = 48°