Answer:
Adiabatic.
Explanation:
Any process in which there is no heat tranference is called adiabatic. In the situation, it is explained that due to the change of volume there is no heat between the gas and the environment.
The frequency of the radio wave is:

The wavelength of an electromagnetic wave is related to its frequency by the relationship

where c is the speed of light and f the frequency. Plugging numbers into the equation, we find

and this is the wavelength of the radio waves in the problem.
They are malleable and lustrous, and can conduct both electricity and thermal heat
Here are the answers:
1. Geosphere (though the term lithosphere is mostly used)
2. Both ice and wind (glaciers, and really strong winds)
3. Water
4. Its inertia (the Earth is constantly "falling" towards the Sun due to its gravitational pull, but its inertia helps the Earth from maintaining its orbit.)
5. The rotating Earth
6. one year
7. The equator
8. It depends on how much of the sunlit side of the Moon faces the Earth
9. When an object in space comes between the Sun and a third object
10. D<span>ifferences in how much the Moon and the Sun pull on different parts of Earth
11. b. False
12. a. True
Hope my answers have come to your help.</span>
Answer:
explained
Explanation:
When the intensity of light is increased on a piece of metal only the number of electron ejected will increase because all other things independent of intensity of light.
Light below certain frequency will not cause any electron emission no matter how intense.
The intensity produces more electron but does not change the maximum kinetic energy of electrons.
Work function is independent of the intensity of light, because it is an intrinsic property of a material.