I believe that the answer to the question provided above is that <span>this represent about the type of change happening in the container it has a chemical change.</span>
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
Answer:
KE = 0.5 * m * v², where: m - mass, v - velocity.
Explanation:
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s 2.
A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:

<span>First of all, the maximum speed occurs when the object passes through the
equilibrium position
The kinetic energy when the object has this max speed is
K= 1/2 * mass * (1.25 m/s)^2
The potential energy in the spring when the speed is equal to zero
U= 1/2 * k * xmax^2
The maximun force of the spring is
mass*acceleration = k*xmax
m * 6.89 m/s2 = k * xmax
xmax = 6.89* m / k
0.5 * m * 1.56 = 0.5 * k * xmax^2
</span>m * 1.56 = k * (<span>6.89* m / k )^2 </span>
<span>
1.56 m = 47.47 m^2 / k
m/k = 0.032862
period = 2 *pi*sqrt[m/k]
= 2 pi </span><span>sqrt [ </span><span>0.032862]
= 1.139 s
A fourth of the period elapses between the instants of max acceleration and maximum speed
= 1/4* period
= 1/4 * </span><span><span>1.139 s </span>
= 0.284s </span>
Answer:
Explanation:
we know that
s=vt here v is the speed and s is distance covered by the signals
given data
v=3*10^8
t=10 min we have to convert it into seconds
1 minute=60 seconds
so
10 minutes =10*60/1 =600 seconds
now putting the value of v and t we can find the value of s
s=vt
s=3*10^8*600
s=1.8*10^11m
i hope this will help you