Answer:
The coupled velocity of both the blocks is 1.92 m/s.
Explanation:
Given that,
Mass of block A, 
Initial speed of block A, 
Mass of block B, 
Initial speed of block B, 
It is mentioned that if the two blocks couple together after collision. We need to find the common velocity immediately after collision. We know that due to coupling, it becomes the case of inelastic collision. Using the conservation of linear momentum. Let V is the coupled velocity of both the blocks. So,

So, the coupled velocity of both the blocks is 1.92 m/s. Hence, this is the required solution.
The answer is: Expressive vocabulary
Expressive vocabulary refers to the combination of all the words that a person has acquire throughout his/her life and can be used in various type of situations.
This would include all words in the child vocabulary, starting from the child's written language, spoken language or even the child's manually signed words.
G is the gravitational constant, which is approximately 6.6x10^-11 Nm/s^2. It has the same value regardless of the masses of both objects or the distance between them.
The displacement vector (SI units) is
![\vec{r} =At\hat{i}+A[t^{3}-6t^{2}]\hat{j}](https://tex.z-dn.net/?f=%5Cvec%7Br%7D%20%3DAt%5Chat%7Bi%7D%2BA%5Bt%5E%7B3%7D-6t%5E%7B2%7D%5D%5Chat%7Bj%7D)
The speed is a scalar quantity. Its magnitude is

Answer: At√(t⁴ - 12t³ + 36t² + 1)