(1) The wavelength of the wave is 1.164 m.
(2) The velocity of the wave is 23.7 m/s.
(3) The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
<h3>
Wavelength of the wave</h3>
A general wave equation is given as;
y(x, t) = A sin(Kx - ωt)
<h3>Velocity of the wave</h3>
v = ω/K
From the given wave equation, we have,
y(x, t) = 0.048 sin(5.4x - 128t)
v = ω/K
where;
- ω corresponds to 128
- k corresponds to 5.4
v = 128/5.4
v = 23.7 m/s
<h3>Wavelength of the wave</h3>
λ = 2π/K
λ = (2π)/(5.4)
λ = 1.164 m
<h3>Maximum speed of the wave</h3>
v(max) = Aω
where;
- A is amplitude of the wave
- ω is angular speed of the wave
v(max) = (0.048)(128)
v(max) = 6.14 m/s
Thus, the wavelength of the wave is 1.164 m.
The velocity of the wave is 23.7 m/s.
The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
Learn more about wavelength here: brainly.com/question/10728818
#SPJ1
The food you eat every day provides the nutrients you need to survive. These food components include the macronutrients – protein, carbohydrate and fat – that offer calories as well as play specific roles in maintaining your health. Micronutrients, such as vitamins and minerals, don’t act as an energy source but do serve a variety of critical functions to ensure your body operates as optimally as possible.
Explanation:
If you cannot visualize it, just assume that the distance from station A to B is 420km. Each half is 210km.
When the car travels from A to B, it takes 420/30 = 14 hours.
When the car travels from B to the halfway point, it takes 210/30 = 7 hours.
When the car travels from the halfway point to A, it takes 210/70 = 3 hours.
Total time taken = 14 + 7 + 3 = 24 hours.
Total distance = 420km * 2 = 840km.
Hence, the average speed of the car is 840/24 = 35km/h.
I think the answer is photosynthis, when plants turn light into food and energy.