<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the molar mass of the insulin is 6087.2 g/mol
False, Molecules are made of atoms and atoms are made of quarks.
3NF3 + 5H2O → HNO3 + 2NO + 9HF
Nitrogen fluoride reacts with water to produce nitric acid, nitric oxide, and hydrogen fluoride. The reaction slowly takes place in a boiling solution.
CH2CH2 + H2O → CH3CH2OH
Ethylene is a hydrocarbon with water that creates ethanol and ethanol is an alcohol
Answer:
Sodium (Na) has atomic number 11.
a balanced chemical equation occurs when the number of the atoms involved in the reactants side is equal to the number of atoms in the products side.