The boiling point is the temperature at which the vapor pressure of a liquid equals the external pressure surrounding the liquid. Therefore, the boiling point of a liquid depends on atmospheric pressure.
Answer:
Explanation:
Explanation:
All you have to do here is use the ideal gas law equation, which looks like this
P
V
=
n
R
T
−−−−−−−−−−
Here
P
is the pressure of the gas
V
is the volume it occupies
n
is the number of moles of gas present in the sample
R
is the universal gas constant, equal to
0.0821
atm L
mol K
T
is the absolute temperature of the gas
Rearrange the equation to solve for
T
P
V
=
n
R
T
⇒
T
=
P
V
n
R
Before plugging in your values, make sure that the units given to you match those used in the expression of the universal gas constant.
In this case, the volume is given in liters and the pressure in atmospheres, so you're good to go.
Plug in your values to find
T
=
3.10
atm
⋅
64.51
L
9.69
moles
⋅
0.0821
atm
⋅
L
mol
⋅
K
T
=
251 K
−−−−−−−−−
The answer is rounded to three

The nucleus of an atom of the element is positively charged and atom has a hollow space inside it.
Explanation:
This experiment was conducted by Rutherford in this experiment. He placed a gold foil and surround it with a screen.
And He exposed gold foil in alpha particles rays in which he noticed that most rays passed through atom which conclude that atom has a large space, some rays get deflected and some reverse their path this show that the positive charge of nucleus of an atom.
Density is equal to mass divided by volume so the densest object will be the object that has the largest mass in the smallest area.
In this case object A is the densest with a density of 10g/cm^3.
I hope this helps. Let me know if anything is unclear.