This uses something called <span>Le Chatelier's principle. It states essentially that any stress put upon a system will be corrected.
In more simple terms, it means that in an equilibrium, such as the equation N2(g) + 3H2(g) <=> 2NH3(g), removing a reactant will cause the system to create more of said reactant to compensate for its loss, or adding excess reactant will cause the system to remove some of the added reactant. For future reference, the same principle applies to products in an equilibrium as well.
In this case, hydrogen gas is a reactant, and hydrogen is being removed. According to </span><span>Le Chatelier's principle, the system will shift to create more hydrogen gas. In essence, it will shift in the direction of the hydrogen gas, so there will be a shift toward the reactants.
To clear something up, Keq will not change, as it is a constant value with constant conditions (such as temperature, pressure, etc.).</span>
Answer:
Pro exercise con suffication
Explanation:
...
Number of moles = mass of product / molecular mass
=mass of product (MgO) / 40.3
Since the mass of MgO is not given in the question, the correct answer choice cannot be given. However, proceeding witht eh above formula will enable you to find the correct number of moles given the mass of MgO.
Answer:
The answer is B. Atomic Mass
Kelvin is a temperature scale designed so that zero degrees K is defined as absolute zero (at absolute zero, a hypothetical temperature, all molecular movement stops - all actual temperatures are above absolute zero) and the size of one unit is the same as the size of one degree Celsius.