The sample has a new pressure of 274kPa. If at 105 kPa and 275K, a 220 mL sample of helium gas is contained in a cylinder with a moving piston. The sample is pushed till it has a 95.0 mL volume and 310K .
The macroscopic characteristics of ideal gases are related by the ideal gas law (PV = nRT). A gas is considered to be perfect if its particles (a) do not interact with one another and (b) occupy no space (have no volume). Where P= pressure V= volume and T = temperature.
From ideal gas equation
P₁V₁/T₁ =P₂V₂/T₂
105×220÷275 = P₂ ×95÷310
P₂= (105×220×310)÷(275×95)
P2= 7161000/26125
P2 = 274.105 kPa
Hence, the new pressure of helium gas is 274kPa
To know more about Ideas gas equation
brainly.com/question/28837405
#SPJ1
Answer : The pH of the solution is, 2.67
Explanation :
The equilibrium chemical reaction is:

Initial conc. 0.450 0 0
At eqm. (0.450-x) x x
As we are given:

The expression for equilibrium constant is:

Now put all the given values in this expression, we get:


The concentration of
= x = 0.00212 M
Now we have to calculate the pH of solution.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


Therefore, the pH of the solution is, 2.67
Polysaccharides, that allow sugar to polymerize
Answer: a) The concentration after 8.8min is 0.17 M
b) Time taken for the concentration of cyclopropane to decrease from 0.25M to 0.15M is 687 seconds.
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
a) concentration after 8.8 min:



b) for concentration to decrease from 0.25M to 0.15M


Answer:
use the equation Mass= RFM*Moles
Explanation:
use your periodic table
and create a little table