The _____melting point________ is the temperature at which a substance changes from solid to liquid; _______boiling point_________ is the temperature at which a substance changes from a liquid to as gas; _______vapourisation_________ is the process by which atoms of molecules leave a liquid and become a gas.
Answer:
A Type of Drink
Explanation:
A controlled variable remains constant throughout the experiment.
In such experiment, you'd test the volume of one single caffeinated drink. You'd have to use the same type of drink every trial.
A free-radical substitution reaction is likely to be responsible for the observations. The reaction mechanism of a reaction like this can be grouped into three phases:
- Initiation; the "light" on the mixture deliver sufficient amount of energy such that the halogen molecules undergo homologous fission. It typically takes ultraviolet radiation to initiate fissions of the bonds.
- Propagation; free radicals react with molecules to produce new free radicals and molecules.
- Termination; two free radicals combine and form covalent bonds to produce stable molecules. Note that it is possible for two carbon-containing free-radicals to combine, leading to the production of trace amounts of long carbon chains in the product.
Initiation

where the big black dot indicates unpaired electrons attached to the atom.
Propagation






Termination

Butter won't melt in a fridge because of intermolecular tensions. While the bonds inside of the fat molecules are unbroken, the attractions between the fat molecules are weaker.
What intermolecular forces are present in butter?
The intermolecular forces known as London dispersion forces are the weakest and are most prominent in hydrocarbons. Due to the fact that butter molecules are hydrocarbons, London dispersion forces do exist between them.
How do intermolecular forces affect melting?
More energy is required to stop the attraction between these molecules as the intermolecular forces become more powerful. Because of this, rising intermolecular forces are accompanied with rising melting points.
Which forces are intramolecular and which are intermolecular?
Intramolecular forces are those that hold atoms together within molecules. The forces that hold molecules together are known as intermolecular forces.
Learn more about intermolecular forces: brainly.com/question/9328418
#SPJ4
The value 6.0 x 10^3- 2.3 × 10^3 in scientific notation is 3.7 × 10^3.
<h3> What is scientific notation?</h3>
Scientific notation is a way to write very large or very small numbers so that they are easier to read and work with.
You express a number as the product of a number greater than or equal to 1 but less than 10 and an integral power of 10 .
<h3>Why it is used? </h3>
There are two reasons to use scientific notation.
- The first is to reveal honest uncertainty in experimental measurements.
- The second is to express very large or very small numbers so they are easier to read.
Given,
= 6.0 x 10^3- 2.3 × 10^3
= (6.0 - 2.3) × 10^3
= 3.7 × 10^3
Thus, we find that the value 6.0 x 10^3- 2.3 × 10^3 in scientific notation is 3.7 × 10^3.
learn more about scientific notation :
brainly.com/question/18073768
#SPJ1