A wet-chemistry biochemical analyzer<span> was assessed for in-practice veterinary use. Its small size may mean a cost-effective method for low-throughput in-house biochemical analyses for first-opinion practice. The objectives of our study were to determine imprecision, total observed error, and acceptability of the </span>analyzer<span> for measurement of common canine and feline </span>serum<span> analytes, and to compare clinical </span>sample<span> results to those from a commercial reference </span>analyzer<span>. Imprecision was determined by within- and between-run repeatability for canine and feline pooled </span>samples<span>, and manufacturer-supplied quality control material (QCM). Total observed error (TEobs) was determined for pooled </span>samples<span> and QCM. Performance was assessed for canine and feline pooled </span>samples<span> by sigma metric determination. Agreement and errors between the in-practice and reference </span>analyzers<span> were determined for canine and feline clinical </span>samples<span> by Bland-Altman and Deming regression analyses. Within- and between-run precision was high for most analytes, and TEobs(%) was mostly lower than total allowable error. Performance based on sigma metrics was good (σ > 4) for many analytes and marginal (σ > 3) for most of the remainder. Correlation between the </span>analyzers<span> was very high for most canine analytes and high for most feline analytes. Between-</span>analyzer<span> bias was generally attributed to high constant error. The in-practice </span>analyzer<span> showed good overall performance, with only calcium and phosphate analyses identified as significantly problematic. Agreement for most analytes was insufficient for transposition of reference intervals, and we recommend that in-practice-specific reference intervals be established in the laboratory.</span>
Answer:
B) Ionic bonds are formed when one atom takes another atom's electrons, while covalent bonds are formed when two atoms share electrons.
Explanation:
Explanation:
The electronegativity difference in C-C and C-H atoms is quite low. This means smaller the electron cloud. This further means larger bond length that is electron's are further from the nucleus. hence, higher potential energy of C-C and C-H bonds.
On the contrary, C-O and H-O have large difference in electronegativity( O is high electronegative element) . This means smaller bond length. Electron's near the nucleus. Thus, lower potential energy of bonds.
The molar mass is 294.1527 g/mol
Answer:
They all have the same number of protons but different numbers of neutrons.
Explanation:
Elements will always have the same number of protons no matter the isotopes. Isotopes only change the number of neutrons. Silicon will always have 14 protons. So silicon-28 has 14 protons and 14 neutrons. Silicon-29 has 14 protons and 15 neutrons. Silicon-30 has 14 protons and 16 neutrons.