Well, the element of hydrogen only has 1 electron in its s sub shell, if it's s sub shell for the energy level of 1 were to be filled, there would need to be 2 electrons present in its shell to have a full first shell, as the s sub shell can only hold 2 electrons within it.
It should be A
But you have this as chemistry? I think this is like a biology question
Blood.
<span>Blood is heterogeneous because it has corpuscles (blood cells and platelets) physically suspended in blood plasma. Blood plasma and the corpuscles have different properties and can be separated by methods such as centrifugation. Also, blood is considered a colloid suspension because it has the properties of both a colloid and a suspension. This is because the blood plasma acts as a colloid. More so, if blood was left to settle,then the blood cells would collect at the bottom hence taking the characteristic of a suspension. </span>
<span>Salad dressing.</span>
<span>Depending on the type of salad, it can either be a heterogeneous or homogeneous mixture. If the salad dressing is only of vinegar or any other oil, then it is a homogenous mixture. However, if it involves a mixture of vinegar and other oils, pepper, herbs, and etcetera, then it is a heterogeneous mixture</span>
First, let us calculate the moles of solute or sodium
bicarbonate is in the 1 ml solution.
<span>moles = 1 mL * (1 g
/ 9 mL) = 0.11 moles</span>
The molar mass of sodium bicarbonate is 84 g/mol,
therefore the mass is:
mass = 0.11 moles * 84 g/mol
<span>mass = 9.33 g</span>
Answer:
k is 3,18*10⁻² s⁻¹ at 75°C
Explanation:
following Arrhenius equation:
k= k₀*e^(-Ea/RT)
where k= rate constant , k₀= frequency factor , Ea= activation energy , R= universal gas constant T=absolute temperature
then for T₁=25°C =298 K
k₁= k₀*e^(-Ea/RT₁)
and for T₁=75°C = 348 K
k₂= k₀*e^(-Ea/RT₂)
dividing both equations
k₂/k₁= e^(-Ea/RT₂+Ea/RT₁ )
k₂= k₁*e^[-Ea/R*(1/T₂-1/T₁ )]
replacing values
k₂= k₁*e^[-Ea/R*(1/T₂-1/T₁ )] = 4,7*10⁻³ s⁻¹ *e^[-33.6*1000 J/mol /8.314 J/molK*(1/ 348 K -1/298 K )] = 3,18*10⁻² s⁻¹
thus k is 3,18*10⁻² s⁻¹ at 75°C