1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
11

A Hall probe, consisting of a rectangular slab of current-carrying material, is calibrated by placing it in a known magnetic fie

ld of magnitude 0.10 T . When the field is oriented normal to the slab's rectangular face, a Hall emf of 20 mV is measured across the slab's width. The probe is then placed in a magnetic field of unknown magnitude B, and a Hall emf of 69 mV is measured. Determine B assuming that the angle θ between the unknown field and the plane of the slab's rectangular face is
(a) θ = 90
(b) θ = 60
Physics
1 answer:
Citrus2011 [14]3 years ago
5 0

Answer:

(a) 0.345 T

(b) 0.389 T

Solution:

As per the question:

Hall emf, V_{Hall} = 20\ mV = 0.02\ V

Magnetic Field, B = 0.10 T

Hall emf, V'_{Hall} = 69\ mV = 0.069\ V

Now,

Drift velocity, v_{d} = \frac{V_{Hall}}{B}

v_{d} = \frac{0.02}{0.10} = 0.2\ m/s

Now, the expression for the electric field is given by:

E_{Hall} = Bv_{d}sin\theta                            (1)

And

E_{Hall} = V_{Hall}d

Thus eqn (1) becomes

V_{Hall}d = dBv_{d}sin\theta

where

d = distance

B = \frac{V_{Hall}}{v_{d}sin\theta}                      (2)

(a) When \theta = 90^{\circ}

B = \frac{0.069}{0.2\times sin90} = 0.345\ T

(b) When \theta = 60^{\circ}

B = \frac{0.069}{0.2\times sin60} = 0.398\ T

You might be interested in
20 points for an answer Explain how the distance of a planet from the sun affects the motion of the planet? Justify your respons
Nataliya [291]
The sun’s huge mass gives it a strong gravitational pull. Because of this gravitational pull, planets that are closer to the sun tend to have different motion than planets that are further away from the sun, because the gravity becomes stronger the closer you get. I hope this helped!
4 0
3 years ago
Read 2 more answers
List and explain briefly similarities and differences between the electric force between two charges and the gravitational force
bazaltina [42]

Answer:

Please see below as the answers are self-explanatory.

Explanation:

  • Similarities

1) The resultant force is along the line that joins both charges or both masses (assuming both objects can be represented as points)

2) Both type of forces obey  Newton's 3rd law.

3) Both are proportional to the product of the property that is affected by the force (charges and masses)

4) Both obey an inverse - square law (consequence of our universe being three-dimensional)

  • Differences

1) Main difference, is that while the gravitational force is always attractive, the electrostatic force can be attractive or repulsive, as there are two types of charges, which attract each other being of different type, and repel each other if they are of the same type.

2) It  is possible, artificially, to block the influence of the electrostatic force, shielding a room, for instance, which is not possible for the gravitational force.

6 0
3 years ago
Manuel is holding a 5kg box. How much force is the box exerting on him?In what direction
soldi70 [24.7K]
The force the box is exerting on Manuel is the weight of the box, downward:
W=mg=(5 kg)(9.81 m/s^2)=49.05 N
and this force is perfectly balanced by the constraint reaction applied by Manuel's hand, pushing upward.
3 0
3 years ago
A ball is thrown so that its initial vertical and horizontal components of velocity are 30 m/s and 15 m/s, respectively. Estimat
mihalych1998 [28]

Answer:

H = 45 m

Explanation:

First we find the launch velocity of the ball by using the following formula:

v₀ = √(v₀ₓ² + v₀y²)

where,

v₀ = launching velocity = ?

v₀ₓ = Horizontal Component of Launch Velocity = 15 m/s

v₀y = Vertical Component of Launch Velocity = 30 m/s

Therefore,

v₀ = √[(15 m/s)² + (30 m/s)²]

v₀ = 33.54 m/s

Now, we find the launch angle of the ball by using the following formula:

θ = tan⁻¹ (v₀y/v₀ₓ)

θ = tan⁻¹ (30/15)

θ = tan⁻¹ (2)

θ = 63.43°

Now, the maximum height attained by the ball is given by the formula:

H = (v₀² Sin² θ)/2g

H = (33.54 m/s)² (Sin² 63.43°)/2(10 m/s²)

<u>H = 45 m</u>

6 0
3 years ago
Which object has the most momentum?
Mashutka [201]
C) has the most mass
5 0
2 years ago
Read 2 more answers
Other questions:
  • The 16.0-in. spring is compressed to a 9.9-in. length, where it is released from rest and accelerates the sliding block A. The a
    12·1 answer
  • A 4 kg body is traveling at 3 m/s with no external force acting on it. At a certain instant an internal explosion occurs, splitt
    8·1 answer
  • Nicholas paddles his canoe downstream from the lodge to the park in 44 hours and then back upstream to the lodge in 55 hrs. If t
    14·1 answer
  • An acceleration of a freely falling body (9.8m/s^2) to ft/s^2
    13·1 answer
  • I don’t know if these are correct please help <br> Will mark brainliest :)
    8·1 answer
  • Abby is writing a biography of Isaac Newton. He was a brilliant English scientist who developed the law of universal gravitation
    5·1 answer
  • A 7.2 kg bowling ball is accelerated with a force of 112,5 N.
    14·1 answer
  • What average net force is required to accelerate a 3950 kg bus to a speed of 25m/s in 10.5 s?
    11·1 answer
  • The process of losing heat that does not
    10·2 answers
  • Fire spreading from a wall to a nearby couch due to radiant heat transfer is an example of: Select one:
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!