The focal length of the lens is the distance between the lens and the image sensor when the subject is in focus, usually stated in millimeters (e.g., 28 mm, 50 mm, or 100 mm). In the case of zoom lenses, both the minimum and maximum focal lengths are stated, for example 18–55 mm.
Answer:
In a circuit ,<u> VOLTAGE </u>can be said to be the "source" or the "push of electrons". This push then creates what is known as a <u> CURRENT , </u>which is the flow of electric charge through the circuit. This flow can the slowed down or restricted by <u>RESISTOR </u>, and this is also what can be harnessed in order to use electric <u>ENERGY </u>.
Explanation:
Voltage:
It is the 'push' that causes charges to move in a wire or other electrical conductor, also it is a Source input to the electric circuit.
Measured in Volts.
Current:
An electric current is the rate of flow of electric charge from a point or through a region.
Measured in Ampere.
Resistor:
Resistor is used to resist the flow of charge or to resist the current called as Resistance.
Measured in Ohms.
Electric Energy:
Electrical energy is a form of energy resulting from the flow of electric charge.
Measured in Joules.
In a circuit , voltage can be said to be the "source" or the "push of electrons". This push then creates what is known as a current, which is the flow of electric charge through the circuit. This flow can the slowed down or restricted by resistor, and this is also what can be harnessed in order to use electric energy.
Answer:
Rectilinear propagation describes the tendency of electromagnetic waves to travel in a straight line. Light does not deviate when travelling through a homogeneous medium, which has the same refractive index throughout; otherwise, light suffers refraction.
The particle has a constant horizontal velocity, and a vertical force won't affect the horizontal speed, so it should be fairly easy to find the last part, "the time taken for a 10m horizontal displacement," using a kinematic equation.
X = x + vt + (1/2)at²
10 = 0 + (1.6)t + (1/2)(0)t²
10/1.6 = t
t = 6.25s
So now we have to find the vertical displacement over 6.25 seconds on a particle of a 2.5kg mass with a force of 8N.
Start with Newton's second law.
F = ma
8 = (2.5)a
a = 3.2m/s²
Now, use kinematics again.
Y = y + vt + (1/2)at²
Y = 0 + (0)(6.25) + (1/2)(3.2)(6.25)²
Y = <u>62.5m</u>