Answer:
False
Explanation:
According to the big bang theory, matter was an infinitely small and very high density point which at one point exploded and expanded in all directions, creating what we know as our Universe, which also includes space and time . This happened about 13.8 billion years ago. Theoretical physicists have managed to reconstruct this chronology of events from 1/100 of a second after the Big Bang. After the explosion, while the Universe expanded, it cooled sufficiently and the first subatomic particles were formed: Electrons, Positrons, Mesons, Barions, Neutrinos, Photons among others. Today more than 90 particles are known. This theory solves many unknowns and is very well received by the scientific community, however there is still much to solve, for example, one of the great unsolved scientific problems in the expanding Universe model is whether the Universe is open or closed.
An attempt to solve this problem is to determine if the average density of matter in the Universe is greater than the critical value in Friedmann's model. The mass of a galaxy can be measured by observing the movement of its stars; multiplying the mass of each galaxy by the number of galaxies, it is seen that the density is only 5 to 10% of the critical value.
You can't answer this question because you aren't giving the specific type of seismic waves. There is an s-wave a p-wave and an l-wave. Those are the basic waves. An S-wave cannot travel through a liquid at all. So, obviously it travels slower than any other seismic wave.
<span>It would travel faster because their speed depends on the density and composition of material that they pass through.</span>
As thermal energy increases, there is more particle movement. As thermal energy increases, there is more particle movement. As thermal energy increases, there is less particle movement.
Sure hope this helps you
The correct answer is A. In the direction of applied force. This is because acceleration occurs n the direction of applied force according to Newtons second law of motion which states that the acceleration of a body is directly proportional to the applied force and takes place in the direction of force.