Answer:
An object's acceleration depends on its mass and on the net force acting on it.
Explanation:
Newton's second law states that the acceleration of an object is directly related to the net force and inversely related to its mass. Acceleration of an object depends on two things, force and mass.
Answer:
0.3956
Explanation:
Newton's 2nd law of motion says that Force = Mass*Acceleration (f=ma) so to find the force used on the football you multiply it's mass by its acceleration.
0.43*0.92 = 0.3956.
0.4 if you round
Answer:
For the complete question provided in explanation, if the elevator moves upward, then the apparent weight will be 1035 N. While for downward motion the apparent weight will be 435 N.
Explanation:
The question is incomplete. The complete question contains a velocity graph provided in the attachment. This is the velocity graph for an elevator having a passenger of 75 kg.
From the slope of graph it is clear that acceleration at t = 1 sec is given as:
Acceleration = a = (4-0)m/s / (1-0)s = 4 m/s^2
Now, there are two cases:
1- Elevator moving up
2- Elevator moving down
For upward motion:
Apparent Weight = m(g + a)
Apparent Weight = (75 kg)(9.8 + 4)m/s^2
<u>Apparent Weight = 1035 N</u>
For downward motion:
Apparent Weight = m(g - a)
Apparent Weight = (75 kg)(9.8 - 4)m/s^2
<u>Apparent Weight = 435 N</u>
The momentum of the truck is given by:
p = mv
p = momentum, m = mass, v = velocity
There isn't too much work to do here; the truck is at rest, therefore its velocity is 0. This means the product of m and v is 0, giving the momentum as 0.
Answer:
17. h = l − l cos θ
18. 1.40 m
Explanation:
Let's call d the height of the triangle. We can then say:
h = l − d
Using trig, we can write d in terms of l and θ:
d = l cos θ
h = l − l cos θ
If l = 6 m and l cos θ = 40°:
h = 6 − 6 cos 40
h ≈ 1.40