Answer:
Kinetic energy, E = 133.38 Joules
Explanation:
It is given that,
Mass of the model airplane, m = 3 kg
Velocity component, v₁ = 5 m/s (due east)
Velocity component, v₂ = 8 m/s (due north)
Let v is the resultant of velocity. It is given by :


Let E is the kinetic energy of the plane. It is given by :


E = 133.38 Joules
So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.
Hrdudikdodidbshshsjjsksks
Answer:
c) L³/T³
Explanation:
If t stands for time, the units are:
(V) = L³, (t) = T
The units for the equation:
V(t) = At³
must be:

Answer:
Explanation:
A motor converts electrical energy to mechanical energy. A current carrying coil is placed between electromagnets. A magnetic force is exerted on the coil which makes it rotate. The direction of current changes twice during the rotation of the coil. An outside source of electric current is used.
Thus, the wrong statement is D. It converts mechanical energy into electrical energy. It is the generator which converts mechanical energy into electrical energy.
Answer:

Explanation:
The electrostatic attraction between the nucleus and the electron is given by:
(1)
where
k is the Coulomb's constant
Ze is the charge of the nucleus
e is the charge of the electron
r is the distance between the electron and the nucleus
This electrostatic attraction provides the centripetal force that keeps the electron in circular motion, which is given by:
(2)
where
m is the mass of the electron
v is the speed of the electron
Combining the two equations (1) and (2), we find

And solving for v, we find an expression for the speed of the electron:
