Answer:
When a rope supports the weight of an object that is at rest, the tension in the rope is equal to the weight of the object: T = mg.
Image result for I need help find how much tension is in the string???? And can you explain how you got it after you get the answer plz????
Hence, in such a case the tension will be equal to the centrifugal force.
Formula for tension = centrifugal force = mv2/r.
So the formula of tension will be = centripetal force – force of gravity = mv2/r – mg = m(v2/r-g)
The formula of tension will be = centripetal force + force of gravity = mv2/r + mg = m(v2/r+g)
Explanation:
Answer:
<em>B) 1.0 × 10^5 V</em>
Explanation:
<u>Electric Potential Due To Point Charges
</u>
The electric potential produced from a point charge Q at a distance r from the charge is

The total electric potential for a system of point charges is equal to the sum of their individual potentials. This is a scalar sum, so direction is not relevant.
We must compute the total electric potential in the center of the square. We need to know the distance from all the corners to the center. The diagonal of the square is

where a is the length of the side.
The distance from any corner to the center is half the diagonal, thus


The total potential is

Where V1 and V2 are produced by the +4\mu C charges and V3 and V4 are produced by the two opposite charges of
. Since all the distances are equal, and the charges producing V3 and V4 are opposite, V3 and V4 cancel each other. We only need to compute V1 or V2, since they are equal, but they won't cancel.


The total potential is


Answer:
0.001152m
Explanation:
Linear expansivity of a material is the change in length of the material per unit length per degree rise in temperature. Mathematically,
¢ = ∆L/L1∆°C
¢ is the linear expansivity of the material = 12 x 10⁻⁶ °C⁻¹
Where ∆L is the change in length = L2-L1
L2 is the final length = ?
L1 is the initial length = 12m
∆°C is the change in temperature = °C2 - °C1 = 50-(-30) = 80°C
Substituting this values inside the formula to get the final length L2 after expansion, we have;
12 x 10⁻⁶ °C⁻¹ = L2-12/12×80
12 x 10⁻⁶ °C⁻¹ = L2-12/960
L2-12= 960×12 x 10⁻⁶ °C⁻¹
L2-12 = 0.001152
L2 = 12+0.001152
L2 = 12.001152m
Expansion will be the change in length L2-L1 = 12.001152-12
= 0.001152m
The expansion cracks between the slabs should be 0.001152m wide to prevent buckling
Answer:
993 m or 3257 ft
Explanation:
The captain was told to fly at at 1500 ft altitude. At the rate of 3.28 ft to 1 m, this is
metres.
Since he was at 1450 m, he thought he was above the correct altitude by
1450 - 457 = 993 m.
In feet, this is
993 * 3.28 = 3257 ft