Answer:
W = 30 J
Explanation:
given,
Work done = 10 J
Stretch of spring, x = 0.1 m
We know,
dW = F .dx
we know, F = k x


![W = k[\dfrac{x^2}{2}]_0^{0.1}](https://tex.z-dn.net/?f=W%20%3D%20k%5B%5Cdfrac%7Bx%5E2%7D%7B2%7D%5D_0%5E%7B0.1%7D)

k = 2000
now, calculating Work done by the spring when it stretched to 0.2 m from 0.1 m.

![W = 2000 [\dfrac{x^2}{2}]_{0.1}^{0.2} dx](https://tex.z-dn.net/?f=W%20%3D%202000%20%5B%5Cdfrac%7Bx%5E2%7D%7B2%7D%5D_%7B0.1%7D%5E%7B0.2%7D%20dx)
W = 1000 x 0.03
W = 30 J
Hence, work done is equal to 30 J.
Answer:
Since the astronaut drops the rock, the initial velocity of the rock is 0 m/s
<u>We are given:</u>
initial velocity (u) = 0 m/s
final velocity (v) = v m/s
acceleration (a) = 1.62 m/s/s
height (h) = 1.25 m
<u>Solving for v:</u>
From the third equation of motion:
v²-u² = 2ah
replacing the variables
v² - (0)² =2 (1.62)(1.25)
v² = 1.62 * 2.5
v² = 4 (approx)
v = √4
v = 2 m/s
The speed of the rock just before it lands is 2 m/s
Answer:
2874.33 m/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²

Now H-h = 0.588 - 0.002 = 0.586 m
The final velocity will be the initial velocity

Acceleration of the frog is 2874.33 m/s²
Answer:
The speed of a wave would be 18 with a wavelength of 2 m and a frequency of 9 Hz.