1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wel
3 years ago
8

HELP

Physics
1 answer:
Sergeu [11.5K]3 years ago
3 0

Answer:

The answer is: To accelerate an object <u>the force applied to the object</u> has to increase.

Explanation:

the acceleration of an object <u>increases with increased force</u> and <u>decreases with increased mass.</u>

You might be interested in
Merry-go-rounds are a common ride in park playgrounds. The ride is a horizontal disk that rotates about a vertical axis at their
Vera_Pavlovna [14]

Answer:

A = 2.36m/s

B = 3.71m/s²

C = 29.61m/s2

Explanation:

First, we convert the diameter of the ride from ft to m

10ft = 3m

Speed of the rider is the

v = circumference of the circle divided by time of rotation

v = [2π(D/2)]/T

v = [2π(3/2)]/4

v = 3π/4

v = 2.36m/s

Radial acceleration can also be found as a = v²/r

Where v = speed of the rider

r = radius of the ride

a = 2.36²/1.5

a = 3.71m/s²

If the time of revolution is halved, then radial acceleration is

A = 4π²R/T²

A = (4 * π² * 3)/2²

A = 118.44/4

A = 29.61m/s²

7 0
3 years ago
A mover loads a 100 kg box into the back of a moving truck by
NeX [460]

Answer:

2.7

Explanation:

The following data were obtained from the question:

Mass (m) of box = 100 Kg

Length (L) of ramp = 4 m

Height (H) of ramp = 1.5 m

Mechanical advantage (MA) of ramp =?

Mechanical advantage of a ramp is simply defined as the ratio of the length of the ramp to the height of the ramp. Mathematically, it is given by:

Mechanical Advantage = Lenght / height

MA= L/H

With the above formula, we can obtain the mechanical advantage of the ramp as follow:

Length (L) of ramp = 4 m

Height (H) of ramp = 1.5 m

Mechanical advantage (MA) of ramp =?

MA = 4/1.5

MA = 2.7

Therefore, the mechanical advantage of the ramp is 2.7

3 0
3 years ago
A stone is thrown vertically upward with a speed of 15.5 m/s from the edge of a cliff 75.0 m high .
rjkz [21]

a) 2.64 s

We can solve this part of the problem by using the following SUVAT equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the stone

u is the initial velocity

t is the time

a is the acceleration

We must be careful to the signs of s, u and a. Taking upward as positive direction, we have:

- s (displacement) negative, since it is downward: so s = -75.0 m

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a= g = -9.8 m/s^2 (acceleration of gravity)

Substituting into the equation,

-75.0 = 15.5 t -4.9t^2\\4.9t^2-15.5t-75.0 = 0

Solving the equation, we have two solutions: t = -5.80 s and t = 2.84 s. Since the negative solution has no physical meaning, the stone reaches the bottom of the cliff 2.64 s later.

b) 10.4 m/s

The speed of the stone when it reaches the bottom of the cliff can be calculated by using the equation:

v=u+at

where again, we must be careful to the signs of the various quantities:

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a = g = -9.8 m/s^2

Substituting t = 2.64 s, we find the final velocity of the stone:

v = 15.5 +(-9.8)(2.64)=-10.4 m/s

where the negative sign means that the velocity is downward: so the speed is 10.4 m/s.

c) 4.11 s

In this case, we can use again the equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the package

u is the initial velocity

t is the time

a is the acceleration

We have:

s = -105 m (vertical displacement of the package, downward so negative)

u = +5.40 m/s (initial velocity of the package, which is the same as the helicopter, upward so positive)

a = g = -9.8 m/s^2

Substituting into the equation,

-105 = 5.40 t -4.9t^2\\4.9t^2 -5.40 t-105=0

Which gives two solutions: t = -5.21 s and t = 4.11 s. Again, we discard the first solution since it is negative, so the package reaches the ground after

t = 4.11 seconds.

5 0
3 years ago
Read 2 more answers
Which two components must a vector quantity
Lemur [1.5K]

Answer:

d. Direction and magnitude

Explanation:

The two components of a vector are its magnitude and direction.

Magnitude is the quantity of the substance

Direction is the path.

  • Other quantities are called scalar quantities.
  • Scalar quantities have only magnitude but no direction.

Examples of vector quantities are velocity, displacement, acceleration.

4 0
3 years ago
An object is dropped from the top of a tall building. At 2 seconds, it is 64 feet from the top of the building. At 4 seconds, it
jeka94

Answer:

96.21 ft/s

Explanation:

To solve this, you only need to use one expression which is:

Vf² = Vo² + 2gh

g = 9.8 m/s²

However, this exercise is talking in feet, so convert the gravity to feet first:

g = 9.8 * 3.28 = 32.15 ft/s²

Vo is zero, because it's a free fall and in free fall the innitial speed is always zero. With this, let's calculate the speed at 2 seconds, with a height of 64 ft, and then with the 256 ft:

V1 = √2*32.15*64

V1 = 64.15 ft/s

V2 = √2*32.15*256

V2 = 128.3 ft/s

So the average rate is:

V = 128.3 + 64.15 / 2

V = 96.22 ft/s

6 0
3 years ago
Other questions:
  • Given that an atom of a semiconductor has a diameter of 2.18 å , what is the maximum number of moles that fit in the channel of
    9·1 answer
  • Suppose that the resistance between the walls of a biological cell is 6.8 × 109 ω. (a) what is the current when the potential di
    7·1 answer
  • Peter throws a snowball at his car parked in the driveway. The snowball disintegrates as it hits the car. By Newton’s third law,
    10·2 answers
  • A bird watcher spots a sparrow in a tree. The sparrow sits in a nest that is 10.5 feet above the bird watcher's eye level, at a
    13·1 answer
  • The equilibrium constant for a given reaction... Group of answer choices always increases with temperature. increases with tempe
    12·1 answer
  • The speed of a wave is 70 m/s. If the wavelength of the wave is 0.4
    11·2 answers
  • In orbit how high is the altitude
    12·1 answer
  • A 2kg object is moving with speed 5ms. then hits a
    14·1 answer
  • What is frequency measured in? What is the amplitude?
    5·1 answer
  • If he leaves the ramp with a speed of 30.5 m/s and has a speed of 28.7 m/s at the top of his trajectory, determine his maximum h
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!