1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
3 years ago
12

It is easy to jump on a smooth surface than of cemented surface

Physics
1 answer:
Reil [10]3 years ago
7 0
There is list friction on the smooth surface the concrete its surface is rough which creates friction when you jump
You might be interested in
If you double the pressure on the surface of a can of water, the buoyant force on a stone placed in that water will
Bingel [31]
The buoyant force won't change.
4 0
4 years ago
Which object had more potential energy when it was lifted to a distance of 1000 centimeters? Show your calculation.
RSB [31]

Explanation:

We Know That

POTENTIAL ENERGY= MASS*g*HEIGHT

When the objects are lifted to same height then the object with heavier mass would have the highest potential energy

.

5 0
3 years ago
Imagine that you move a substance from one container to another and its volume changes. What state of matter is that substance?
Naddika [18.5K]

If it's volume changes when you move it to the new container it would be a solid

4 0
3 years ago
Read 2 more answers
Which statement is true according to Newton's first law of motion?
katrin2010 [14]
C) In the absence of an unbalanced force, an object at rest will stay at rest and an object in motion will stay in motion.

hope this helps and have a great day :)







8 0
3 years ago
Read 2 more answers
Can you explain that gravity pulls us to the Earth & can you calculate weight from masses on both on Earth and other planets
schepotkina [342]
I don't actually understand what your question is, but I'll dance around the subject
for a while, and hope that you get something out of it.

-- The effect of gravity is:  There's a <em>pair</em> of forces, <em>in both directions</em>, between
every two masses.

-- The strength of the force depends on the <em>product</em> of the masses, so it doesn't matter whether there's a big one and a small one, or whether they're nearly equal. 
It's the product that counts.  Bigger product ==> stronger force, in direct proportion.

-- The strength of the forces also depends on the distance between the objects' centers.  More distance => weaker force.  Actually, (more distance)² ==> weaker force.

-- The forces are <em>equal in both directions</em>.  Your weight on Earth is exactly equal to
the Earth's weight on you.  You can prove that.  Turn your bathroom scale face down
and stand on it.  Now it's measuring the force that attracts the Earth toward you. 
If you put a little mirror down under the numbers, you'll see that it's the same as
the force that attracts you toward the Earth when the scale is right-side-up.

-- When you (or a ball) are up on the roof and step off, the force of gravity that pulls
you (or the ball) toward the Earth causes you (or the ball) to accelerate (fall) toward the Earth. 
Also, the force that attracts the Earth toward you (or the ball) causes the Earth to accelerate (fall) toward you (or the ball).
The forces are equal.  But since the Earth has more mass than you have, you accelerate toward the Earth faster than the Earth accelerates toward you.

--  This works exactly the same for every pair of masses in the universe.  Gravity
is everywhere.  You can't turn it off, and you can't shield anything from it.

-- Sometimes you'll hear about some mysterious way to "defy gravity".  It's not possible to 'defy' gravity, but since we know that it's there, we can work with it.
If we want to move something in the opposite direction from where gravity is pulling it, all we need to do is provide a force in that direction that's stronger than the force of gravity.
I know that sounds complicated, so here are a few examples of how we do it:
-- use arm-muscle force to pick a book UP off the table
-- use leg-muscle force to move your whole body UP the stairs
-- use buoyant force to LIFT a helium balloon or a hot-air balloon 
-- use the force of air resistance to LIFT an airplane.

-- The weight of 1 kilogram of mass on or near the Earth is 9.8 newtons.  (That's
about 2.205 pounds).  The same kilogram of mass has different weights on other planets. Wherever it is, we only know one of the masses ... the kilogram.  In order
to figure out what it weighs there, we need to know the mass of the planet, and
the distance between the kilogram and the center of the planet.

I hope I told you something that you were actually looking for.
7 0
3 years ago
Other questions:
  • A proton (mass = 1.67 10–27 kg, charge = 1.60 10–19 C) moves from point A to point B under the influence of an electrostatic for
    6·1 answer
  • What is the tiny particle that is the fundamental building block of a substance
    5·1 answer
  • Which term is defined as the ratio of the speed of light in a vacuum to the speed of light in the material it is passing through
    8·2 answers
  • A 66 kg person is parachuting and experiencing a downward acceleration of 2.1 m/s2. The mass of the parachute is 4.0 kg. (a) Wha
    14·1 answer
  • 1. (6x + 8)(5x - 8)
    5·1 answer
  • 11. The professor who first
    10·1 answer
  • Lithium (chemical symbol Li) is located in Group 1, Period 2. Which is lithium most likely to be? O A. A soft, shiny, highly rea
    9·2 answers
  • Convert .54g to dekagrams. NEED HELP!!!!!!
    8·2 answers
  • Someone help me please
    6·1 answer
  • A transformer with X turns in primary coil and Y turns in secondary coil is used to change the magnitude of voltage to 240 V. Ca
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!