Step-by-step explanation:
Selling price = Rs.80
Cost price = Rs.100
here, CP > SP
Now...
Loss ( L ) = CP - SP
= RS.100 - 80
= Rs.20
Now...


= 20 %
Open the compass it is more than half of the distance between a and b, and scribes arcs of the same radius centered at a and b. call the two points where these two arcs meet c and d. Draw the line between c and d. CD it is the perpendicular bisector of the line segment AB. call the point where CD intersects AB and E
The answer is 0 < x <span>≤ 7
</span>
First, we know that width = x
Which means that length = x +18
So, the possible equation for the Table's area is
X (X + 18) ≤ 175
X^2 + 18x - 175 <span>≤ </span>0
Next, we need to calculate is by using complete square method
x^2 + 18x + 81 <span>≤ 175 + 81
(x + 9)^2 </span><span>≤ 256
|x + 9| </span><span>≤ sqrt(256)
|x + 9| </span><span>≤ +-16
-16 </span>≤ x + 9 <span>≤ 16
</span>-16 - 9 ≤ x <span>≤ 16 - 9
</span>-25 ≤ x <span>≤ 7
Since the width couldn't be negative, we can change -25 with 0,
so it become
</span> 0 < x ≤ 7
Answer:
The population of bacteria can be expressed as a function of number of days.
Population =
where n is the number of days since the beginning.
Step-by-step explanation:
Number of bacteria on the first day=![\[5 * 2^{0} = 5\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B0%7D%20%3D%205%5C%5D)
Number of bacteria on the second day = ![\[5 * 2^{1} = 10\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B1%7D%20%3D%2010%5C%5D)
Number of bacteria on the third day = ![\[5*2^{2} = 20\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B2%7D%20%3D%2020%5C%5D)
Number of bacteria on the fourth day = ![\[5*2^{3} = 40\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B3%7D%20%3D%2040%5C%5D)
As we can see , the number of bacteria on any given day is a function of the number of days n.
This expression can be expressed generally as
where n is the number of days since the beginning.