Answer:
Complementary
Step-by-step explanation:
Answer:
L = 60
Step-by-step explanation:
To solve for a, you must get a by itself on one side of the equation. Now, a is "joined" to m by multiplication. To "separate" them, use the inverse operation, division.
Divide both sides of the equation by m.
Answer:
Assuming population data
![\sigma = \sqrt{0.000354}=0.0188](https://tex.z-dn.net/?f=%20%5Csigma%20%3D%20%5Csqrt%7B0.000354%7D%3D0.0188)
Assuming sample data
![s = \sqrt{0.000425}=0.0206](https://tex.z-dn.net/?f=%20s%20%3D%20%5Csqrt%7B0.000425%7D%3D0.0206)
Step-by-step explanation:
For this case we have the following data given:
736.352, 736.363, 736.375, 736.324, 736.358, and 736.383.
The first step in order to calculate the standard deviation is calculate the mean.
Assuming population data
![\mu = \frac{\sum_{i=1}^6 X_i}{6}](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E6%20X_i%7D%7B6%7D)
The value for the mean would be:
![\mu = \frac{736.352+736.363+736.375+736.324+736.358+736.383}{6}=736.359](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%5Cfrac%7B736.352%2B736.363%2B736.375%2B736.324%2B736.358%2B736.383%7D%7B6%7D%3D736.359)
And the population variance would be given by:
![\sigma^2 = \frac{\sum_{i=1}^6 (x_i-\bar x)}{6}](https://tex.z-dn.net/?f=%20%5Csigma%5E2%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E6%20%28x_i-%5Cbar%20x%29%7D%7B6%7D)
And we got ![\sigma^2 =0.000354](https://tex.z-dn.net/?f=%20%5Csigma%5E2%20%3D0.000354)
And the deviation would be just the square root of the variance:
![\sigma = \sqrt{0.000354}=0.0188](https://tex.z-dn.net/?f=%20%5Csigma%20%3D%20%5Csqrt%7B0.000354%7D%3D0.0188)
Assuming sample data
![\bar X = \frac{\sum_{i=1}^6 X_i}{6}](https://tex.z-dn.net/?f=%5Cbar%20X%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E6%20X_i%7D%7B6%7D)
The value for the mean would be:
![\bar X = \frac{736.352+736.363+736.375+736.324+736.358+736.383}{6}=736.359](https://tex.z-dn.net/?f=%5Cbar%20X%20%3D%20%5Cfrac%7B736.352%2B736.363%2B736.375%2B736.324%2B736.358%2B736.383%7D%7B6%7D%3D736.359)
And the population variance would be given by:
![s^2 = \frac{\sum_{i=1}^6 (x_i-\bar x)}{6-1}](https://tex.z-dn.net/?f=%20s%5E2%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E6%20%28x_i-%5Cbar%20x%29%7D%7B6-1%7D)
And we got ![s^2 =0.000425](https://tex.z-dn.net/?f=%20s%5E2%20%3D0.000425)
And the deviation would be just the square root of the variance:
![s = \sqrt{0.000425}=0.0206](https://tex.z-dn.net/?f=%20s%20%3D%20%5Csqrt%7B0.000425%7D%3D0.0206)